|
| 1 | +from __future__ import annotations |
| 2 | + |
| 3 | +from typing import Optional |
| 4 | +import numpy as np |
| 5 | +from sklearn.base import ClassifierMixin |
| 6 | +from sklearn.linear_model import LogisticRegression |
| 7 | +from sklearn.pipeline import Pipeline |
| 8 | +from sklearn.utils.validation import check_is_fitted |
| 9 | +from mapie._typing import ArrayLike |
| 10 | + |
| 11 | + |
| 12 | +class DensityRatioEstimator(): |
| 13 | + """ Template class for density ratio estimation. """ |
| 14 | + |
| 15 | + def __init__(self): |
| 16 | + pass |
| 17 | + |
| 18 | + def fit(self): |
| 19 | + pass |
| 20 | + |
| 21 | + def predict(self): |
| 22 | + pass |
| 23 | + |
| 24 | + def check_is_fitted(self): |
| 25 | + pass |
| 26 | + |
| 27 | + |
| 28 | +class ProbClassificationDRE(DensityRatioEstimator): |
| 29 | + """ |
| 30 | + Density ratio estimation by classification. |
| 31 | +
|
| 32 | + This class implements the density ratio estimation by classification |
| 33 | + strategy. The broad idea is to first learn a discriminative classifier to |
| 34 | + distinguish between source and target datasets, and then use the class |
| 35 | + probability estimates from the classifier to estimate the density ratio. |
| 36 | +
|
| 37 | + Parameters |
| 38 | + ---------- |
| 39 | + estimator: Optional[ClassifierMixin] |
| 40 | + Any classifier with scikit-learn API |
| 41 | + (i.e. with fit, predict, and predict_proba methods), by default ``None``. |
| 42 | + If ``None``, estimator defaults to a ``LogisticRegression`` instance. |
| 43 | +
|
| 44 | + clip_min: Optional[float] |
| 45 | + Lower bound the probability estimate from the classifier to |
| 46 | + ``clip_min``. If ``None``, the estimates are not lower bounded. |
| 47 | +
|
| 48 | + By default ``None``. |
| 49 | +
|
| 50 | + clip_max: Optional[float] |
| 51 | + Upper bound the probability estimate from the classifier to |
| 52 | + ``clip_max``. If ``None``, the estimates are not upper bounded. |
| 53 | +
|
| 54 | + By default ``None``. |
| 55 | +
|
| 56 | + Attributes |
| 57 | + ---------- |
| 58 | + source_prob: float |
| 59 | + The marginal probability of getting a datapoint from the source |
| 60 | + distribution. |
| 61 | +
|
| 62 | + target_prob: float |
| 63 | + The marginal probability of getting a datapoint from the target |
| 64 | + distribution. |
| 65 | +
|
| 66 | + References |
| 67 | + ---------- |
| 68 | +
|
| 69 | + Examples |
| 70 | + -------- |
| 71 | +
|
| 72 | + """ |
| 73 | + |
| 74 | + def __init__( |
| 75 | + self, |
| 76 | + estimator: Optional[ClassifierMixin] = None, |
| 77 | + clip_min: Optional[float] = None, |
| 78 | + clip_max: Optional[float] = None, |
| 79 | + ) -> None: |
| 80 | + |
| 81 | + self.estimator = self._check_estimator(estimator) |
| 82 | + |
| 83 | + if self.clip_max is None: |
| 84 | + self.clip_max = 1 |
| 85 | + elif all((clip_max >= 0, clip_max <= 1)): |
| 86 | + self.clip_max = clip_max |
| 87 | + else: |
| 88 | + raise ValueError("Expected `clip_max` to be between 0 and 1.") |
| 89 | + |
| 90 | + if self.clip_min is None: |
| 91 | + self.clip_min = 0 |
| 92 | + elif all((clip_min >= 0, clip_min <= clip_max)): |
| 93 | + self.clip_min = clip_min |
| 94 | + else: |
| 95 | + raise ValueError( |
| 96 | + "Expected `clip_min` to be between 0 and `clip_max`.") |
| 97 | + |
| 98 | + def _check_estimator( |
| 99 | + self, |
| 100 | + estimator: Optional[ClassifierMixin] = None, |
| 101 | + ) -> ClassifierMixin: |
| 102 | + """ |
| 103 | + Check if estimator is ``None``, |
| 104 | + and returns a ``LogisticRegression`` instance if necessary. |
| 105 | +
|
| 106 | + Parameters |
| 107 | + ---------- |
| 108 | + estimator : Optional[ClassifierMixin], optional |
| 109 | + Estimator to check, by default ``None`` |
| 110 | +
|
| 111 | + Returns |
| 112 | + ------- |
| 113 | + ClassifierMixin |
| 114 | + The estimator itself or a default ``LogisticRegression`` instance. |
| 115 | +
|
| 116 | + Raises |
| 117 | + ------ |
| 118 | + ValueError |
| 119 | + If the estimator is not ``None`` |
| 120 | + and has no fit, predict, nor predict_proba methods. |
| 121 | + """ |
| 122 | + if estimator is None: |
| 123 | + return LogisticRegression(class_weight="balanced", random_state=0) |
| 124 | + |
| 125 | + if isinstance(estimator, Pipeline): |
| 126 | + est = estimator[-1] |
| 127 | + else: |
| 128 | + est = estimator |
| 129 | + if ( |
| 130 | + not hasattr(est, "fit") |
| 131 | + and not hasattr(est, "predict") |
| 132 | + and not hasattr(est, "predict_proba") |
| 133 | + ): |
| 134 | + raise ValueError( |
| 135 | + "Invalid estimator. " |
| 136 | + "Please provide a classifier with fit," |
| 137 | + "predict, and predict_proba methods." |
| 138 | + ) |
| 139 | + |
| 140 | + return estimator |
| 141 | + |
| 142 | + def fit( |
| 143 | + self, |
| 144 | + X_source: ArrayLike, |
| 145 | + X_target: ArrayLike, |
| 146 | + source_prob: Optional[float] = None, |
| 147 | + target_prob: Optional[float] = None, |
| 148 | + sample_weight: Optional[ArrayLike] = None |
| 149 | + ) -> ProbClassificationDRE: |
| 150 | + """ |
| 151 | + Fit the discriminative classifier to source and target samples. |
| 152 | +
|
| 153 | + Parameters |
| 154 | + ---------- |
| 155 | + X_source: ArrayLike of shape (n_source_samples, n_features) |
| 156 | + Training data. |
| 157 | +
|
| 158 | + X_target: ArrayLike of shape (n_target_samples, n_features) |
| 159 | + Training data. |
| 160 | +
|
| 161 | + source_prob: Optional[float] |
| 162 | + The marginal probability of getting a datapoint from the source |
| 163 | + distribution. If ``None``, the proportion of source examples in |
| 164 | + the training dataset is used. |
| 165 | +
|
| 166 | + By default ``None``. |
| 167 | +
|
| 168 | + target_prob: Optional[float] |
| 169 | + The marginal probability of getting a datapoint from the target |
| 170 | + distribution. If ``None``, the proportion of target examples in |
| 171 | + the training dataset is used. |
| 172 | +
|
| 173 | + By default ``None``. |
| 174 | +
|
| 175 | + sample_weight : Optional[ArrayLike] of shape (n_source_samples + n_target_samples,) |
| 176 | + Sample weights for fitting the out-of-fold models. |
| 177 | + If ``None``, then samples are equally weighted. |
| 178 | + If some weights are null, |
| 179 | + their corresponding observations are removed |
| 180 | + before the fitting process and hence have no prediction sets. |
| 181 | +
|
| 182 | + By default ``None``. |
| 183 | +
|
| 184 | + Returns |
| 185 | + ------- |
| 186 | + ProbClassificationDRE |
| 187 | + The density ratio estimator itself. |
| 188 | + """ |
| 189 | + |
| 190 | + # Find the marginal source and target probability. |
| 191 | + n_source = X_source.shape[0] |
| 192 | + n_target = X_target.shape[0] |
| 193 | + |
| 194 | + if source_prob is None: |
| 195 | + source_prob = self.n_source/(self.n_source + self.n_target) |
| 196 | + |
| 197 | + if target_prob is None: |
| 198 | + target_prob = self.n_target/(self.n_source + self.n_target) |
| 199 | + |
| 200 | + if source_prob + target_prob != 1: |
| 201 | + raise ValueError( |
| 202 | + "``source_prob`` and ``target_prob`` do not add up to 1.") |
| 203 | + |
| 204 | + # Estimate the conditional probability of source/target given X. |
| 205 | + X = np.concatenate((X_source, X_target), axis=0) |
| 206 | + y = np.concatenate((np.zeros(n_source), np.ones(n_target)), axis=0) |
| 207 | + |
| 208 | + if type(self.estimator) == Pipeline: |
| 209 | + step_name = self.estimator.steps[-1][0] |
| 210 | + self.estimator.fit( |
| 211 | + X, y, **{f'{step_name}__sample_weight': sample_weight}) |
| 212 | + else: |
| 213 | + self.estimator.fit(X, y, sample_weight=sample_weight) |
| 214 | + |
| 215 | + return self |
| 216 | + |
| 217 | + def predict( |
| 218 | + self, |
| 219 | + X: ArrayLike, |
| 220 | + ) -> ArrayLike: |
| 221 | + """ |
| 222 | + Predict the density ratio estimates for new samples. |
| 223 | +
|
| 224 | + Parameters |
| 225 | + ---------- |
| 226 | + X: ArrayLike of shape (n_samples, n_features) |
| 227 | + Samples to get the density ratio estimates for. |
| 228 | +
|
| 229 | + Returns |
| 230 | + ------- |
| 231 | + ProbClassificationDRE |
| 232 | + The density ratio estimtor itself. |
| 233 | + """ |
| 234 | + |
| 235 | + # Some models in sklearn have predict_proba but not predict_log_proba. |
| 236 | + if not hasattr(self.estimator, "predict_log_proba"): |
| 237 | + probs = self.estimator.predict_proba(X) |
| 238 | + log_probs = np.log(probs) |
| 239 | + else: |
| 240 | + log_probs = self.estimator.predict_log_proba(X) |
| 241 | + |
| 242 | + # Clip prob to mitigate extremely high or low dre. |
| 243 | + log_probs = np.clip(log_probs, a_min=np.log( |
| 244 | + self.clip_min), a_max=np.log(self.clip_max)) |
| 245 | + |
| 246 | + return np.exp(log_probs[:, 1] - log_probs[:, 0] + np.log(self.source_prob) - np.log(self.target_prob)) |
| 247 | + |
| 248 | + def check_is_fitted(self): |
| 249 | + if isinstance(self.estimator, Pipeline): |
| 250 | + check_is_fitted(self.estimator[-1]) |
| 251 | + else: |
| 252 | + check_is_fitted(self.estimator) |
| 253 | + |
| 254 | + |
| 255 | +def calculate_ess(weights: ArrayLike) -> float: |
| 256 | + """ |
| 257 | + Calculates the effective sample size given importance weights for the |
| 258 | + source distribution. |
| 259 | +
|
| 260 | + Parameters |
| 261 | + ---------- |
| 262 | + weights: ArrayLike |
| 263 | + Importance weights for the examples in source distribution. |
| 264 | + """ |
| 265 | + num = weights.sum()**2 |
| 266 | + denom = (weights**2).sum() |
| 267 | + return num/denom |
0 commit comments