11from __future__ import annotations
22
33import warnings
4- from typing import Iterable , Dict , List , Optional , Tuple , Union , cast
4+ from typing import Iterable , List , Optional , Tuple , Union , cast , Any
55
66import numpy as np
77from sklearn .base import RegressorMixin , clone
@@ -547,7 +547,7 @@ def fit(
547547 The model itself.
548548 """
549549
550- self .init_fit ()
550+ self .initialize_fit ()
551551
552552 if self .cv == "prefit" :
553553 X_calib , y_calib = self .prefit_estimators (X , y )
@@ -570,8 +570,7 @@ def fit(
570570
571571 return self
572572
573- def init_fit (self ):
574-
573+ def initialize_fit (self ) -> None :
575574 self .cv = self ._check_cv (cast (str , self .cv ))
576575 self .alpha_np = self ._check_alpha (self .alpha )
577576 self .estimators_ : List [RegressorMixin ] = []
@@ -667,29 +666,31 @@ def fit_estimators(
667666
668667 def conformalize (
669668 self ,
670- X_conf : ArrayLike ,
671- y_conf : ArrayLike ,
669+ X : ArrayLike ,
670+ y : ArrayLike ,
672671 sample_weight : Optional [ArrayLike ] = None ,
673- predict_params : Dict = {},
674- ):
672+ # Parameter groups kept for compliance with superclass MapieRegressor
673+ groups : Optional [ArrayLike ] = None ,
674+ ** kwargs : Any ,
675+ ) -> MapieRegressor :
675676
676- self .n_calib_samples = _num_samples (y_conf )
677+ self .n_calib_samples = _num_samples (y )
677678
678679 y_calib_preds = np .full (
679680 shape = (3 , self .n_calib_samples ),
680681 fill_value = np .nan
681682 )
682683
683684 for i , est in enumerate (self .estimators_ ):
684- y_calib_preds [i ] = est .predict (X_conf , ** predict_params ).ravel ()
685+ y_calib_preds [i ] = est .predict (X , ** kwargs ).ravel ()
685686
686687 self .conformity_scores_ = np .full (
687688 shape = (3 , self .n_calib_samples ),
688689 fill_value = np .nan
689690 )
690691
691- self .conformity_scores_ [0 ] = y_calib_preds [0 ] - y_conf
692- self .conformity_scores_ [1 ] = y_conf - y_calib_preds [1 ]
692+ self .conformity_scores_ [0 ] = y_calib_preds [0 ] - y
693+ self .conformity_scores_ [1 ] = y - y_calib_preds [1 ]
693694 self .conformity_scores_ [2 ] = np .max (
694695 [
695696 self .conformity_scores_ [0 ],
0 commit comments