@@ -313,9 +313,9 @@ def test_results_for_same_alpha(strategy: str) -> None:
313313 mapie = MapieRegressor (alpha = [0.1 , 0.1 ], ** STRATEGIES [strategy ])
314314 mapie .fit (X_reg , y_reg )
315315 y_preds = mapie .predict (X_reg )
316- np .testing .assert_almost_equal (y_preds [:, 0 , 0 ], y_preds [:, 0 , 1 ], 7 )
317- np .testing .assert_almost_equal (y_preds [:, 1 , 0 ], y_preds [:, 1 , 1 ], 7 )
318- np .testing .assert_almost_equal (y_preds [:, 2 , 0 ], y_preds [:, 2 , 1 ], 7 )
316+ np .testing .assert_almost_equal (y_preds [:, 0 , 0 ], y_preds [:, 0 , 1 ])
317+ np .testing .assert_almost_equal (y_preds [:, 1 , 0 ], y_preds [:, 1 , 1 ])
318+ np .testing .assert_almost_equal (y_preds [:, 2 , 0 ], y_preds [:, 2 , 1 ])
319319
320320
321321@pytest .mark .parametrize ("strategy" , [* STRATEGIES ])
@@ -338,8 +338,8 @@ def test_results_for_alpha_as_float_and_arraylike(strategy: str, alpha: Any) ->
338338 y_preds_float2 = mapie_float2 .fit (X_reg , y_reg ).predict (X_reg )
339339 mapie_array = MapieRegressor (alpha = alpha , ** STRATEGIES [strategy ])
340340 y_preds_array = mapie_array .fit (X_reg , y_reg ).predict (X_reg )
341- np .testing .assert_almost_equal (y_preds_float1 [:, :, 0 ], y_preds_array [:, :, 0 ], 7 )
342- np .testing .assert_almost_equal (y_preds_float2 [:, :, 0 ], y_preds_array [:, :, 1 ], 7 )
341+ np .testing .assert_almost_equal (y_preds_float1 [:, :, 0 ], y_preds_array [:, :, 0 ])
342+ np .testing .assert_almost_equal (y_preds_float2 [:, :, 0 ], y_preds_array [:, :, 1 ])
343343
344344
345345@pytest .mark .parametrize ("strategy" , [* STRATEGIES ])
@@ -353,4 +353,4 @@ def test_results_single_and_multi_jobs(strategy: str) -> None:
353353 mapie_multi .fit (X_toy , y_toy )
354354 y_preds_single = mapie_single .predict (X_toy )
355355 y_preds_multi = mapie_multi .predict (X_toy )
356- np .testing .assert_almost_equal (y_preds_single , y_preds_multi , 7 )
356+ np .testing .assert_almost_equal (y_preds_single , y_preds_multi )
0 commit comments