Skip to content

Commit 82abc17

Browse files
author
Thomas Morzadec
committed
correct changepoint notebook
1 parent a31ee8b commit 82abc17

File tree

1 file changed

+25
-6
lines changed

1 file changed

+25
-6
lines changed

notebooks/regression/ts-changepoint.ipynb

Lines changed: 25 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -245,7 +245,7 @@
245245
"print(\"EnbPI, with no partial_fit, width optimization\")\n",
246246
"mapie_enbpi = mapie_enbpi.fit(X_train, y_train)\n",
247247
"y_pred_npfit, y_pis_npfit = mapie_enbpi.predict(\n",
248-
" X_test, alpha=alpha, ensemble=True, beta_optimize=True\n",
248+
" X_test, alpha=alpha, ensemble=True, optimize_beta=True\n",
249249
")\n",
250250
"coverage_npfit = regression_coverage_score(\n",
251251
" y_test, y_pis_npfit[:, 0, 0], y_pis_npfit[:, 1, 0]\n",
@@ -273,6 +273,24 @@
273273
"text": [
274274
"EnbPI with partial_fit, width optimization\n"
275275
]
276+
},
277+
{
278+
"ename": "KeyboardInterrupt",
279+
"evalue": "",
280+
"output_type": "error",
281+
"traceback": [
282+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
283+
"\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
284+
"Input \u001b[0;32mIn [9]\u001b[0m, in \u001b[0;36m<cell line: 9>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m step \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(gap, \u001b[38;5;28mlen\u001b[39m(X_test), gap):\n\u001b[1;32m 10\u001b[0m mapie_enbpi\u001b[38;5;241m.\u001b[39mpartial_fit(\n\u001b[1;32m 11\u001b[0m X_test\u001b[38;5;241m.\u001b[39miloc[(step \u001b[38;5;241m-\u001b[39m gap):step, :],\n\u001b[1;32m 12\u001b[0m y_test\u001b[38;5;241m.\u001b[39miloc[(step \u001b[38;5;241m-\u001b[39m gap):step],\n\u001b[1;32m 13\u001b[0m )\n\u001b[1;32m 14\u001b[0m (\n\u001b[1;32m 15\u001b[0m y_pred_pfit[step:step \u001b[38;5;241m+\u001b[39m gap],\n\u001b[1;32m 16\u001b[0m y_pis_pfit[step:step \u001b[38;5;241m+\u001b[39m gap, :, :],\n\u001b[0;32m---> 17\u001b[0m ) \u001b[38;5;241m=\u001b[39m \u001b[43mmapie_enbpi\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpredict\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 18\u001b[0m \u001b[43m \u001b[49m\u001b[43mX_test\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43miloc\u001b[49m\u001b[43m[\u001b[49m\u001b[43mstep\u001b[49m\u001b[43m:\u001b[49m\u001b[43m(\u001b[49m\u001b[43mstep\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m+\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mgap\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m:\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 19\u001b[0m \u001b[43m \u001b[49m\u001b[43malpha\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43malpha\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 20\u001b[0m \u001b[43m \u001b[49m\u001b[43mensemble\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 21\u001b[0m \u001b[43m \u001b[49m\u001b[43moptimize_beta\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\n\u001b[1;32m 22\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 23\u001b[0m coverage_pfit \u001b[38;5;241m=\u001b[39m regression_coverage_score(\n\u001b[1;32m 24\u001b[0m y_test, y_pis_pfit[:, \u001b[38;5;241m0\u001b[39m, \u001b[38;5;241m0\u001b[39m], y_pis_pfit[:, \u001b[38;5;241m1\u001b[39m, \u001b[38;5;241m0\u001b[39m]\n\u001b[1;32m 25\u001b[0m )\n\u001b[1;32m 26\u001b[0m width_pfit \u001b[38;5;241m=\u001b[39m regression_mean_width_score(\n\u001b[1;32m 27\u001b[0m y_pis_pfit[:, \u001b[38;5;241m0\u001b[39m, \u001b[38;5;241m0\u001b[39m], y_pis_pfit[:, \u001b[38;5;241m1\u001b[39m, \u001b[38;5;241m0\u001b[39m]\n\u001b[1;32m 28\u001b[0m )\n",
285+
"File \u001b[0;32m~/Missions/MAPIE/mapie/time_series_regression.py:263\u001b[0m, in \u001b[0;36mMapieTimeSeriesRegressor.predict\u001b[0;34m(self, X, ensemble, alpha, optimize_beta)\u001b[0m\n\u001b[1;32m 261\u001b[0m y_pred_up \u001b[38;5;241m=\u001b[39m y_pred[:, np\u001b[38;5;241m.\u001b[39mnewaxis] \u001b[38;5;241m+\u001b[39m higher_quantiles\n\u001b[1;32m 262\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 263\u001b[0m y_pred_multi \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_pred_multi\u001b[49m\u001b[43m(\u001b[49m\u001b[43mX\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 264\u001b[0m pred \u001b[38;5;241m=\u001b[39m aggregate_all(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39magg_function, y_pred_multi)\n\u001b[1;32m 265\u001b[0m lower_bounds, upper_bounds \u001b[38;5;241m=\u001b[39m pred, pred\n",
286+
"File \u001b[0;32m~/Missions/MAPIE/mapie/regression.py:477\u001b[0m, in \u001b[0;36mMapieRegressor._pred_multi\u001b[0;34m(self, X)\u001b[0m\n\u001b[1;32m 462\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_pred_multi\u001b[39m(\u001b[38;5;28mself\u001b[39m, X: ArrayLike) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m NDArray:\n\u001b[1;32m 463\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 464\u001b[0m \u001b[38;5;124;03m Return a prediction per train sample for each test sample, by\u001b[39;00m\n\u001b[1;32m 465\u001b[0m \u001b[38;5;124;03m aggregation with matrix ``k_``.\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 474\u001b[0m \u001b[38;5;124;03m NDArray of shape (n_samples_test, n_samples_train)\u001b[39;00m\n\u001b[1;32m 475\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[1;32m 476\u001b[0m y_pred_multi \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mcolumn_stack(\n\u001b[0;32m--> 477\u001b[0m [e\u001b[38;5;241m.\u001b[39mpredict(X) \u001b[38;5;28;01mfor\u001b[39;00m e \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mestimators_]\n\u001b[1;32m 478\u001b[0m )\n\u001b[1;32m 479\u001b[0m \u001b[38;5;66;03m# At this point, y_pred_multi is of shape\u001b[39;00m\n\u001b[1;32m 480\u001b[0m \u001b[38;5;66;03m# (n_samples_test, n_estimators_). The method\u001b[39;00m\n\u001b[1;32m 481\u001b[0m \u001b[38;5;66;03m# ``_aggregate_with_mask`` fits it to the right size\u001b[39;00m\n\u001b[1;32m 482\u001b[0m \u001b[38;5;66;03m# thanks to the shape of k_.\u001b[39;00m\n\u001b[1;32m 484\u001b[0m y_pred_multi \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_aggregate_with_mask(y_pred_multi, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mk_)\n",
287+
"File \u001b[0;32m~/Missions/MAPIE/mapie/regression.py:477\u001b[0m, in \u001b[0;36m<listcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 462\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_pred_multi\u001b[39m(\u001b[38;5;28mself\u001b[39m, X: ArrayLike) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m NDArray:\n\u001b[1;32m 463\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 464\u001b[0m \u001b[38;5;124;03m Return a prediction per train sample for each test sample, by\u001b[39;00m\n\u001b[1;32m 465\u001b[0m \u001b[38;5;124;03m aggregation with matrix ``k_``.\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 474\u001b[0m \u001b[38;5;124;03m NDArray of shape (n_samples_test, n_samples_train)\u001b[39;00m\n\u001b[1;32m 475\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[1;32m 476\u001b[0m y_pred_multi \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mcolumn_stack(\n\u001b[0;32m--> 477\u001b[0m [\u001b[43me\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpredict\u001b[49m\u001b[43m(\u001b[49m\u001b[43mX\u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;28;01mfor\u001b[39;00m e \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mestimators_]\n\u001b[1;32m 478\u001b[0m )\n\u001b[1;32m 479\u001b[0m \u001b[38;5;66;03m# At this point, y_pred_multi is of shape\u001b[39;00m\n\u001b[1;32m 480\u001b[0m \u001b[38;5;66;03m# (n_samples_test, n_estimators_). The method\u001b[39;00m\n\u001b[1;32m 481\u001b[0m \u001b[38;5;66;03m# ``_aggregate_with_mask`` fits it to the right size\u001b[39;00m\n\u001b[1;32m 482\u001b[0m \u001b[38;5;66;03m# thanks to the shape of k_.\u001b[39;00m\n\u001b[1;32m 484\u001b[0m y_pred_multi \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_aggregate_with_mask(y_pred_multi, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mk_)\n",
288+
"File \u001b[0;32m~/miniconda3_64/envs/mapie/lib/python3.10/site-packages/sklearn/ensemble/_forest.py:974\u001b[0m, in \u001b[0;36mForestRegressor.predict\u001b[0;34m(self, X)\u001b[0m\n\u001b[1;32m 972\u001b[0m \u001b[38;5;66;03m# Parallel loop\u001b[39;00m\n\u001b[1;32m 973\u001b[0m lock \u001b[38;5;241m=\u001b[39m threading\u001b[38;5;241m.\u001b[39mLock()\n\u001b[0;32m--> 974\u001b[0m \u001b[43mParallel\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 975\u001b[0m \u001b[43m \u001b[49m\u001b[43mn_jobs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mn_jobs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 976\u001b[0m \u001b[43m \u001b[49m\u001b[43mverbose\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mverbose\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 977\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43m_joblib_parallel_args\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrequire\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43msharedmem\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 978\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 979\u001b[0m \u001b[43m \u001b[49m\u001b[43mdelayed\u001b[49m\u001b[43m(\u001b[49m\u001b[43m_accumulate_prediction\u001b[49m\u001b[43m)\u001b[49m\u001b[43m(\u001b[49m\u001b[43me\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpredict\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mX\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m[\u001b[49m\u001b[43my_hat\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mlock\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 980\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43me\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mestimators_\u001b[49m\n\u001b[1;32m 981\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 983\u001b[0m y_hat \u001b[38;5;241m/\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlen\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mestimators_)\n\u001b[1;32m 985\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m y_hat\n",
289+
"File \u001b[0;32m~/miniconda3_64/envs/mapie/lib/python3.10/site-packages/joblib/parallel.py:1046\u001b[0m, in \u001b[0;36mParallel.__call__\u001b[0;34m(self, iterable)\u001b[0m\n\u001b[1;32m 1043\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdispatch_one_batch(iterator):\n\u001b[1;32m 1044\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_iterating \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_original_iterator \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m-> 1046\u001b[0m \u001b[38;5;28;01mwhile\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdispatch_one_batch\u001b[49m\u001b[43m(\u001b[49m\u001b[43miterator\u001b[49m\u001b[43m)\u001b[49m:\n\u001b[1;32m 1047\u001b[0m \u001b[38;5;28;01mpass\u001b[39;00m\n\u001b[1;32m 1049\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m pre_dispatch \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mall\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01mor\u001b[39;00m n_jobs \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m1\u001b[39m:\n\u001b[1;32m 1050\u001b[0m \u001b[38;5;66;03m# The iterable was consumed all at once by the above for loop.\u001b[39;00m\n\u001b[1;32m 1051\u001b[0m \u001b[38;5;66;03m# No need to wait for async callbacks to trigger to\u001b[39;00m\n\u001b[1;32m 1052\u001b[0m \u001b[38;5;66;03m# consumption.\u001b[39;00m\n",
290+
"File \u001b[0;32m~/miniconda3_64/envs/mapie/lib/python3.10/site-packages/joblib/parallel.py:822\u001b[0m, in \u001b[0;36mParallel.dispatch_one_batch\u001b[0;34m(self, iterator)\u001b[0m\n\u001b[1;32m 814\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_lock:\n\u001b[1;32m 815\u001b[0m \u001b[38;5;66;03m# to ensure an even distribution of the workolad between workers,\u001b[39;00m\n\u001b[1;32m 816\u001b[0m \u001b[38;5;66;03m# we look ahead in the original iterators more than batch_size\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 819\u001b[0m \u001b[38;5;66;03m# queue, _ready_batches, that is looked-up prior to re-consuming\u001b[39;00m\n\u001b[1;32m 820\u001b[0m \u001b[38;5;66;03m# tasks from the origal iterator.\u001b[39;00m\n\u001b[1;32m 821\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 822\u001b[0m tasks \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_ready_batches\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[43mblock\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m)\u001b[49m\n\u001b[1;32m 823\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m queue\u001b[38;5;241m.\u001b[39mEmpty:\n\u001b[1;32m 824\u001b[0m \u001b[38;5;66;03m# slice the iterator n_jobs * batchsize items at a time. If the\u001b[39;00m\n\u001b[1;32m 825\u001b[0m \u001b[38;5;66;03m# slice returns less than that, then the current batchsize puts\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 828\u001b[0m \u001b[38;5;66;03m# accordingly to distribute evenly the last items between all\u001b[39;00m\n\u001b[1;32m 829\u001b[0m \u001b[38;5;66;03m# workers.\u001b[39;00m\n\u001b[1;32m 830\u001b[0m n_jobs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_cached_effective_n_jobs\n",
291+
"File \u001b[0;32m~/miniconda3_64/envs/mapie/lib/python3.10/queue.py:154\u001b[0m, in \u001b[0;36mQueue.get\u001b[0;34m(self, block, timeout)\u001b[0m\n\u001b[1;32m 151\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39munfinished_tasks \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1\u001b[39m\n\u001b[1;32m 152\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mnot_empty\u001b[38;5;241m.\u001b[39mnotify()\n\u001b[0;32m--> 154\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mget\u001b[39m(\u001b[38;5;28mself\u001b[39m, block\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m, timeout\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m):\n\u001b[1;32m 155\u001b[0m \u001b[38;5;124;03m'''Remove and return an item from the queue.\u001b[39;00m\n\u001b[1;32m 156\u001b[0m \n\u001b[1;32m 157\u001b[0m \u001b[38;5;124;03m If optional args 'block' is true and 'timeout' is None (the default),\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 163\u001b[0m \u001b[38;5;124;03m in that case).\u001b[39;00m\n\u001b[1;32m 164\u001b[0m \u001b[38;5;124;03m '''\u001b[39;00m\n\u001b[1;32m 165\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mnot_empty:\n",
292+
"\u001b[0;31mKeyboardInterrupt\u001b[0m: "
293+
]
276294
}
277295
],
278296
"source": [
@@ -282,7 +300,7 @@
282300
"y_pred_pfit = np.zeros(y_pred_npfit.shape)\n",
283301
"y_pis_pfit = np.zeros(y_pis_npfit.shape)\n",
284302
"y_pred_pfit[:gap], y_pis_pfit[:gap, :, :] = mapie_enbpi.predict(\n",
285-
" X_test.iloc[:gap, :], alpha=alpha, ensemble=True\n",
303+
" X_test.iloc[:gap, :], alpha=alpha, ensemble=True, optimize_beta=True\n",
286304
")\n",
287305
"for step in range(gap, len(X_test), gap):\n",
288306
" mapie_enbpi.partial_fit(\n",
@@ -295,7 +313,8 @@
295313
" ) = mapie_enbpi.predict(\n",
296314
" X_test.iloc[step:(step + gap), :],\n",
297315
" alpha=alpha,\n",
298-
" ensemble=True\n",
316+
" ensemble=True,\n",
317+
" optimize_beta=True\n",
299318
" )\n",
300319
"coverage_pfit = regression_coverage_score(\n",
301320
" y_test, y_pis_pfit[:, 0, 0], y_pis_pfit[:, 1, 0]\n",
@@ -314,7 +333,7 @@
314333
},
315334
{
316335
"cell_type": "code",
317-
"execution_count": 10,
336+
"execution_count": null,
318337
"metadata": {},
319338
"outputs": [],
320339
"source": [
@@ -712,9 +731,9 @@
712731
"formats": "ipynb,md"
713732
},
714733
"kernelspec": {
715-
"display_name": "mapie-notebooks",
734+
"display_name": "mapie",
716735
"language": "python",
717-
"name": "mapie-notebooks"
736+
"name": "mapie"
718737
},
719738
"language_info": {
720739
"codemirror_mode": {

0 commit comments

Comments
 (0)