|
245 | 245 | "print(\"EnbPI, with no partial_fit, width optimization\")\n",
|
246 | 246 | "mapie_enbpi = mapie_enbpi.fit(X_train, y_train)\n",
|
247 | 247 | "y_pred_npfit, y_pis_npfit = mapie_enbpi.predict(\n",
|
248 |
| - " X_test, alpha=alpha, ensemble=True, beta_optimize=True\n", |
| 248 | + " X_test, alpha=alpha, ensemble=True, optimize_beta=True\n", |
249 | 249 | ")\n",
|
250 | 250 | "coverage_npfit = regression_coverage_score(\n",
|
251 | 251 | " y_test, y_pis_npfit[:, 0, 0], y_pis_npfit[:, 1, 0]\n",
|
|
273 | 273 | "text": [
|
274 | 274 | "EnbPI with partial_fit, width optimization\n"
|
275 | 275 | ]
|
| 276 | + }, |
| 277 | + { |
| 278 | + "ename": "KeyboardInterrupt", |
| 279 | + "evalue": "", |
| 280 | + "output_type": "error", |
| 281 | + "traceback": [ |
| 282 | + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", |
| 283 | + "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", |
| 284 | + "Input \u001b[0;32mIn [9]\u001b[0m, in \u001b[0;36m<cell line: 9>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m step \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(gap, \u001b[38;5;28mlen\u001b[39m(X_test), gap):\n\u001b[1;32m 10\u001b[0m mapie_enbpi\u001b[38;5;241m.\u001b[39mpartial_fit(\n\u001b[1;32m 11\u001b[0m X_test\u001b[38;5;241m.\u001b[39miloc[(step \u001b[38;5;241m-\u001b[39m gap):step, :],\n\u001b[1;32m 12\u001b[0m y_test\u001b[38;5;241m.\u001b[39miloc[(step \u001b[38;5;241m-\u001b[39m gap):step],\n\u001b[1;32m 13\u001b[0m )\n\u001b[1;32m 14\u001b[0m (\n\u001b[1;32m 15\u001b[0m y_pred_pfit[step:step \u001b[38;5;241m+\u001b[39m gap],\n\u001b[1;32m 16\u001b[0m y_pis_pfit[step:step \u001b[38;5;241m+\u001b[39m gap, :, :],\n\u001b[0;32m---> 17\u001b[0m ) \u001b[38;5;241m=\u001b[39m \u001b[43mmapie_enbpi\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpredict\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 18\u001b[0m \u001b[43m \u001b[49m\u001b[43mX_test\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43miloc\u001b[49m\u001b[43m[\u001b[49m\u001b[43mstep\u001b[49m\u001b[43m:\u001b[49m\u001b[43m(\u001b[49m\u001b[43mstep\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m+\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mgap\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m:\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 19\u001b[0m \u001b[43m \u001b[49m\u001b[43malpha\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43malpha\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 20\u001b[0m \u001b[43m \u001b[49m\u001b[43mensemble\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 21\u001b[0m \u001b[43m \u001b[49m\u001b[43moptimize_beta\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\n\u001b[1;32m 22\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 23\u001b[0m coverage_pfit \u001b[38;5;241m=\u001b[39m regression_coverage_score(\n\u001b[1;32m 24\u001b[0m y_test, y_pis_pfit[:, \u001b[38;5;241m0\u001b[39m, \u001b[38;5;241m0\u001b[39m], y_pis_pfit[:, \u001b[38;5;241m1\u001b[39m, \u001b[38;5;241m0\u001b[39m]\n\u001b[1;32m 25\u001b[0m )\n\u001b[1;32m 26\u001b[0m width_pfit \u001b[38;5;241m=\u001b[39m regression_mean_width_score(\n\u001b[1;32m 27\u001b[0m y_pis_pfit[:, \u001b[38;5;241m0\u001b[39m, \u001b[38;5;241m0\u001b[39m], y_pis_pfit[:, \u001b[38;5;241m1\u001b[39m, \u001b[38;5;241m0\u001b[39m]\n\u001b[1;32m 28\u001b[0m )\n", |
| 285 | + "File \u001b[0;32m~/Missions/MAPIE/mapie/time_series_regression.py:263\u001b[0m, in \u001b[0;36mMapieTimeSeriesRegressor.predict\u001b[0;34m(self, X, ensemble, alpha, optimize_beta)\u001b[0m\n\u001b[1;32m 261\u001b[0m y_pred_up \u001b[38;5;241m=\u001b[39m y_pred[:, np\u001b[38;5;241m.\u001b[39mnewaxis] \u001b[38;5;241m+\u001b[39m higher_quantiles\n\u001b[1;32m 262\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 263\u001b[0m y_pred_multi \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_pred_multi\u001b[49m\u001b[43m(\u001b[49m\u001b[43mX\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 264\u001b[0m pred \u001b[38;5;241m=\u001b[39m aggregate_all(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39magg_function, y_pred_multi)\n\u001b[1;32m 265\u001b[0m lower_bounds, upper_bounds \u001b[38;5;241m=\u001b[39m pred, pred\n", |
| 286 | + "File \u001b[0;32m~/Missions/MAPIE/mapie/regression.py:477\u001b[0m, in \u001b[0;36mMapieRegressor._pred_multi\u001b[0;34m(self, X)\u001b[0m\n\u001b[1;32m 462\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_pred_multi\u001b[39m(\u001b[38;5;28mself\u001b[39m, X: ArrayLike) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m NDArray:\n\u001b[1;32m 463\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 464\u001b[0m \u001b[38;5;124;03m Return a prediction per train sample for each test sample, by\u001b[39;00m\n\u001b[1;32m 465\u001b[0m \u001b[38;5;124;03m aggregation with matrix ``k_``.\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 474\u001b[0m \u001b[38;5;124;03m NDArray of shape (n_samples_test, n_samples_train)\u001b[39;00m\n\u001b[1;32m 475\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[1;32m 476\u001b[0m y_pred_multi \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mcolumn_stack(\n\u001b[0;32m--> 477\u001b[0m [e\u001b[38;5;241m.\u001b[39mpredict(X) \u001b[38;5;28;01mfor\u001b[39;00m e \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mestimators_]\n\u001b[1;32m 478\u001b[0m )\n\u001b[1;32m 479\u001b[0m \u001b[38;5;66;03m# At this point, y_pred_multi is of shape\u001b[39;00m\n\u001b[1;32m 480\u001b[0m \u001b[38;5;66;03m# (n_samples_test, n_estimators_). The method\u001b[39;00m\n\u001b[1;32m 481\u001b[0m \u001b[38;5;66;03m# ``_aggregate_with_mask`` fits it to the right size\u001b[39;00m\n\u001b[1;32m 482\u001b[0m \u001b[38;5;66;03m# thanks to the shape of k_.\u001b[39;00m\n\u001b[1;32m 484\u001b[0m y_pred_multi \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_aggregate_with_mask(y_pred_multi, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mk_)\n", |
| 287 | + "File \u001b[0;32m~/Missions/MAPIE/mapie/regression.py:477\u001b[0m, in \u001b[0;36m<listcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 462\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_pred_multi\u001b[39m(\u001b[38;5;28mself\u001b[39m, X: ArrayLike) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m NDArray:\n\u001b[1;32m 463\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 464\u001b[0m \u001b[38;5;124;03m Return a prediction per train sample for each test sample, by\u001b[39;00m\n\u001b[1;32m 465\u001b[0m \u001b[38;5;124;03m aggregation with matrix ``k_``.\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 474\u001b[0m \u001b[38;5;124;03m NDArray of shape (n_samples_test, n_samples_train)\u001b[39;00m\n\u001b[1;32m 475\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[1;32m 476\u001b[0m y_pred_multi \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mcolumn_stack(\n\u001b[0;32m--> 477\u001b[0m [\u001b[43me\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpredict\u001b[49m\u001b[43m(\u001b[49m\u001b[43mX\u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;28;01mfor\u001b[39;00m e \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mestimators_]\n\u001b[1;32m 478\u001b[0m )\n\u001b[1;32m 479\u001b[0m \u001b[38;5;66;03m# At this point, y_pred_multi is of shape\u001b[39;00m\n\u001b[1;32m 480\u001b[0m \u001b[38;5;66;03m# (n_samples_test, n_estimators_). The method\u001b[39;00m\n\u001b[1;32m 481\u001b[0m \u001b[38;5;66;03m# ``_aggregate_with_mask`` fits it to the right size\u001b[39;00m\n\u001b[1;32m 482\u001b[0m \u001b[38;5;66;03m# thanks to the shape of k_.\u001b[39;00m\n\u001b[1;32m 484\u001b[0m y_pred_multi \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_aggregate_with_mask(y_pred_multi, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mk_)\n", |
| 288 | + "File \u001b[0;32m~/miniconda3_64/envs/mapie/lib/python3.10/site-packages/sklearn/ensemble/_forest.py:974\u001b[0m, in \u001b[0;36mForestRegressor.predict\u001b[0;34m(self, X)\u001b[0m\n\u001b[1;32m 972\u001b[0m \u001b[38;5;66;03m# Parallel loop\u001b[39;00m\n\u001b[1;32m 973\u001b[0m lock \u001b[38;5;241m=\u001b[39m threading\u001b[38;5;241m.\u001b[39mLock()\n\u001b[0;32m--> 974\u001b[0m \u001b[43mParallel\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 975\u001b[0m \u001b[43m \u001b[49m\u001b[43mn_jobs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mn_jobs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 976\u001b[0m \u001b[43m \u001b[49m\u001b[43mverbose\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mverbose\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 977\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43m_joblib_parallel_args\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrequire\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43msharedmem\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 978\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 979\u001b[0m \u001b[43m \u001b[49m\u001b[43mdelayed\u001b[49m\u001b[43m(\u001b[49m\u001b[43m_accumulate_prediction\u001b[49m\u001b[43m)\u001b[49m\u001b[43m(\u001b[49m\u001b[43me\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpredict\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mX\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m[\u001b[49m\u001b[43my_hat\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mlock\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 980\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43me\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mestimators_\u001b[49m\n\u001b[1;32m 981\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 983\u001b[0m y_hat \u001b[38;5;241m/\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlen\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mestimators_)\n\u001b[1;32m 985\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m y_hat\n", |
| 289 | + "File \u001b[0;32m~/miniconda3_64/envs/mapie/lib/python3.10/site-packages/joblib/parallel.py:1046\u001b[0m, in \u001b[0;36mParallel.__call__\u001b[0;34m(self, iterable)\u001b[0m\n\u001b[1;32m 1043\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdispatch_one_batch(iterator):\n\u001b[1;32m 1044\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_iterating \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_original_iterator \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m-> 1046\u001b[0m \u001b[38;5;28;01mwhile\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdispatch_one_batch\u001b[49m\u001b[43m(\u001b[49m\u001b[43miterator\u001b[49m\u001b[43m)\u001b[49m:\n\u001b[1;32m 1047\u001b[0m \u001b[38;5;28;01mpass\u001b[39;00m\n\u001b[1;32m 1049\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m pre_dispatch \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mall\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01mor\u001b[39;00m n_jobs \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m1\u001b[39m:\n\u001b[1;32m 1050\u001b[0m \u001b[38;5;66;03m# The iterable was consumed all at once by the above for loop.\u001b[39;00m\n\u001b[1;32m 1051\u001b[0m \u001b[38;5;66;03m# No need to wait for async callbacks to trigger to\u001b[39;00m\n\u001b[1;32m 1052\u001b[0m \u001b[38;5;66;03m# consumption.\u001b[39;00m\n", |
| 290 | + "File \u001b[0;32m~/miniconda3_64/envs/mapie/lib/python3.10/site-packages/joblib/parallel.py:822\u001b[0m, in \u001b[0;36mParallel.dispatch_one_batch\u001b[0;34m(self, iterator)\u001b[0m\n\u001b[1;32m 814\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_lock:\n\u001b[1;32m 815\u001b[0m \u001b[38;5;66;03m# to ensure an even distribution of the workolad between workers,\u001b[39;00m\n\u001b[1;32m 816\u001b[0m \u001b[38;5;66;03m# we look ahead in the original iterators more than batch_size\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 819\u001b[0m \u001b[38;5;66;03m# queue, _ready_batches, that is looked-up prior to re-consuming\u001b[39;00m\n\u001b[1;32m 820\u001b[0m \u001b[38;5;66;03m# tasks from the origal iterator.\u001b[39;00m\n\u001b[1;32m 821\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 822\u001b[0m tasks \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_ready_batches\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[43mblock\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m)\u001b[49m\n\u001b[1;32m 823\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m queue\u001b[38;5;241m.\u001b[39mEmpty:\n\u001b[1;32m 824\u001b[0m \u001b[38;5;66;03m# slice the iterator n_jobs * batchsize items at a time. If the\u001b[39;00m\n\u001b[1;32m 825\u001b[0m \u001b[38;5;66;03m# slice returns less than that, then the current batchsize puts\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 828\u001b[0m \u001b[38;5;66;03m# accordingly to distribute evenly the last items between all\u001b[39;00m\n\u001b[1;32m 829\u001b[0m \u001b[38;5;66;03m# workers.\u001b[39;00m\n\u001b[1;32m 830\u001b[0m n_jobs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_cached_effective_n_jobs\n", |
| 291 | + "File \u001b[0;32m~/miniconda3_64/envs/mapie/lib/python3.10/queue.py:154\u001b[0m, in \u001b[0;36mQueue.get\u001b[0;34m(self, block, timeout)\u001b[0m\n\u001b[1;32m 151\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39munfinished_tasks \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1\u001b[39m\n\u001b[1;32m 152\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mnot_empty\u001b[38;5;241m.\u001b[39mnotify()\n\u001b[0;32m--> 154\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mget\u001b[39m(\u001b[38;5;28mself\u001b[39m, block\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m, timeout\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m):\n\u001b[1;32m 155\u001b[0m \u001b[38;5;124;03m'''Remove and return an item from the queue.\u001b[39;00m\n\u001b[1;32m 156\u001b[0m \n\u001b[1;32m 157\u001b[0m \u001b[38;5;124;03m If optional args 'block' is true and 'timeout' is None (the default),\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 163\u001b[0m \u001b[38;5;124;03m in that case).\u001b[39;00m\n\u001b[1;32m 164\u001b[0m \u001b[38;5;124;03m '''\u001b[39;00m\n\u001b[1;32m 165\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mnot_empty:\n", |
| 292 | + "\u001b[0;31mKeyboardInterrupt\u001b[0m: " |
| 293 | + ] |
276 | 294 | }
|
277 | 295 | ],
|
278 | 296 | "source": [
|
|
282 | 300 | "y_pred_pfit = np.zeros(y_pred_npfit.shape)\n",
|
283 | 301 | "y_pis_pfit = np.zeros(y_pis_npfit.shape)\n",
|
284 | 302 | "y_pred_pfit[:gap], y_pis_pfit[:gap, :, :] = mapie_enbpi.predict(\n",
|
285 |
| - " X_test.iloc[:gap, :], alpha=alpha, ensemble=True\n", |
| 303 | + " X_test.iloc[:gap, :], alpha=alpha, ensemble=True, optimize_beta=True\n", |
286 | 304 | ")\n",
|
287 | 305 | "for step in range(gap, len(X_test), gap):\n",
|
288 | 306 | " mapie_enbpi.partial_fit(\n",
|
|
295 | 313 | " ) = mapie_enbpi.predict(\n",
|
296 | 314 | " X_test.iloc[step:(step + gap), :],\n",
|
297 | 315 | " alpha=alpha,\n",
|
298 |
| - " ensemble=True\n", |
| 316 | + " ensemble=True,\n", |
| 317 | + " optimize_beta=True\n", |
299 | 318 | " )\n",
|
300 | 319 | "coverage_pfit = regression_coverage_score(\n",
|
301 | 320 | " y_test, y_pis_pfit[:, 0, 0], y_pis_pfit[:, 1, 0]\n",
|
|
314 | 333 | },
|
315 | 334 | {
|
316 | 335 | "cell_type": "code",
|
317 |
| - "execution_count": 10, |
| 336 | + "execution_count": null, |
318 | 337 | "metadata": {},
|
319 | 338 | "outputs": [],
|
320 | 339 | "source": [
|
|
712 | 731 | "formats": "ipynb,md"
|
713 | 732 | },
|
714 | 733 | "kernelspec": {
|
715 |
| - "display_name": "mapie-notebooks", |
| 734 | + "display_name": "mapie", |
716 | 735 | "language": "python",
|
717 |
| - "name": "mapie-notebooks" |
| 736 | + "name": "mapie" |
718 | 737 | },
|
719 | 738 | "language_info": {
|
720 | 739 | "codemirror_mode": {
|
|
0 commit comments