Skip to content

Commit e1dd0e7

Browse files
Merge pull request #498 from scikit-learn-contrib/497-import-in-the-ts-changepoint-notebook-related-to-conformity-scores-is-incorrect
Import in the ts-changepoint notebook related to conformity scores is incorrect
2 parents a9eb89a + ede2113 commit e1dd0e7

File tree

1 file changed

+47
-46
lines changed

1 file changed

+47
-46
lines changed

notebooks/regression/ts-changepoint.ipynb

Lines changed: 47 additions & 46 deletions
Original file line numberDiff line numberDiff line change
@@ -39,7 +39,7 @@
3939
},
4040
{
4141
"cell_type": "code",
42-
"execution_count": 425,
42+
"execution_count": 629,
4343
"metadata": {},
4444
"outputs": [],
4545
"source": [
@@ -50,7 +50,7 @@
5050
},
5151
{
5252
"cell_type": "code",
53-
"execution_count": 426,
53+
"execution_count": 630,
5454
"metadata": {},
5555
"outputs": [],
5656
"source": [
@@ -66,7 +66,8 @@
6666
"from mapie.metrics import regression_coverage_score, regression_mean_width_score, coverage_width_based\n",
6767
"from mapie.subsample import BlockBootstrap\n",
6868
"from mapie.time_series_regression import MapieTimeSeriesRegressor\n",
69-
"from mapie.conformity_scores import ConformityScore\n",
69+
"from mapie.conformity_scores.regression import BaseRegressionScore\n",
70+
"from mapie.conformity_scores.regression import BaseConformityScore\n",
7071
"\n",
7172
"%reload_ext autoreload\n",
7273
"%autoreload 2\n",
@@ -83,7 +84,7 @@
8384
},
8485
{
8586
"cell_type": "code",
86-
"execution_count": 427,
87+
"execution_count": 631,
8788
"metadata": {},
8889
"outputs": [],
8990
"source": [
@@ -112,7 +113,7 @@
112113
},
113114
{
114115
"cell_type": "code",
115-
"execution_count": 428,
116+
"execution_count": 632,
116117
"metadata": {},
117118
"outputs": [],
118119
"source": [
@@ -132,7 +133,7 @@
132133
},
133134
{
134135
"cell_type": "code",
135-
"execution_count": 429,
136+
"execution_count": 633,
136137
"metadata": {},
137138
"outputs": [
138139
{
@@ -141,7 +142,7 @@
141142
"Text(0, 0.5, 'Hourly demand (GW)')"
142143
]
143144
},
144-
"execution_count": 429,
145+
"execution_count": 633,
145146
"metadata": {},
146147
"output_type": "execute_result"
147148
},
@@ -173,7 +174,7 @@
173174
},
174175
{
175176
"cell_type": "code",
176-
"execution_count": 430,
177+
"execution_count": 634,
177178
"metadata": {},
178179
"outputs": [],
179180
"source": [
@@ -214,7 +215,7 @@
214215
},
215216
{
216217
"cell_type": "code",
217-
"execution_count": 431,
218+
"execution_count": 635,
218219
"metadata": {},
219220
"outputs": [],
220221
"source": [
@@ -241,7 +242,7 @@
241242
},
242243
{
243244
"cell_type": "code",
244-
"execution_count": 432,
245+
"execution_count": 636,
245246
"metadata": {},
246247
"outputs": [
247248
{
@@ -271,7 +272,7 @@
271272
},
272273
{
273274
"cell_type": "code",
274-
"execution_count": 433,
275+
"execution_count": 637,
275276
"metadata": {},
276277
"outputs": [
277278
{
@@ -310,7 +311,7 @@
310311
},
311312
{
312313
"cell_type": "code",
313-
"execution_count": 434,
314+
"execution_count": 638,
314315
"metadata": {},
315316
"outputs": [
316317
{
@@ -357,7 +358,7 @@
357358
},
358359
{
359360
"cell_type": "code",
360-
"execution_count": 435,
361+
"execution_count": 639,
361362
"metadata": {},
362363
"outputs": [
363364
{
@@ -411,7 +412,7 @@
411412
},
412413
{
413414
"cell_type": "code",
414-
"execution_count": 436,
415+
"execution_count": 640,
415416
"metadata": {},
416417
"outputs": [
417418
{
@@ -436,7 +437,7 @@
436437
},
437438
{
438439
"cell_type": "code",
439-
"execution_count": 437,
440+
"execution_count": 641,
440441
"metadata": {},
441442
"outputs": [],
442443
"source": [
@@ -448,7 +449,7 @@
448449
},
449450
{
450451
"cell_type": "code",
451-
"execution_count": 438,
452+
"execution_count": 642,
452453
"metadata": {},
453454
"outputs": [],
454455
"source": [
@@ -460,7 +461,7 @@
460461
},
461462
{
462463
"cell_type": "code",
463-
"execution_count": 439,
464+
"execution_count": 643,
464465
"metadata": {},
465466
"outputs": [],
466467
"source": [
@@ -495,7 +496,7 @@
495496
},
496497
{
497498
"cell_type": "code",
498-
"execution_count": 440,
499+
"execution_count": 644,
499500
"metadata": {},
500501
"outputs": [
501502
{
@@ -515,7 +516,7 @@
515516
},
516517
{
517518
"cell_type": "code",
518-
"execution_count": 441,
519+
"execution_count": 645,
519520
"metadata": {},
520521
"outputs": [
521522
{
@@ -559,7 +560,7 @@
559560
},
560561
{
561562
"cell_type": "code",
562-
"execution_count": 442,
563+
"execution_count": 646,
563564
"metadata": {},
564565
"outputs": [],
565566
"source": [
@@ -569,7 +570,7 @@
569570
},
570571
{
571572
"cell_type": "code",
572-
"execution_count": 443,
573+
"execution_count": 647,
573574
"metadata": {},
574575
"outputs": [],
575576
"source": [
@@ -589,16 +590,16 @@
589590
},
590591
{
591592
"cell_type": "code",
592-
"execution_count": 444,
593+
"execution_count": 648,
593594
"metadata": {},
594595
"outputs": [
595596
{
596597
"data": {
597598
"text/plain": [
598-
"[<matplotlib.lines.Line2D at 0x184c64760>]"
599+
"[<matplotlib.lines.Line2D at 0x186d0b730>]"
599600
]
600601
},
601-
"execution_count": 444,
602+
"execution_count": 648,
602603
"metadata": {},
603604
"output_type": "execute_result"
604605
},
@@ -630,7 +631,7 @@
630631
},
631632
{
632633
"cell_type": "code",
633-
"execution_count": 445,
634+
"execution_count": 649,
634635
"metadata": {},
635636
"outputs": [
636637
{
@@ -660,7 +661,7 @@
660661
},
661662
{
662663
"cell_type": "code",
663-
"execution_count": 446,
664+
"execution_count": 650,
664665
"metadata": {},
665666
"outputs": [
666667
{
@@ -699,26 +700,26 @@
699700
},
700701
{
701702
"cell_type": "code",
702-
"execution_count": 447,
703+
"execution_count": 651,
703704
"metadata": {},
704705
"outputs": [],
705706
"source": [
706707
"def compute_quantiles(conformity_scores, alpha_np):\n",
707708
"\n",
708-
" beta_np = ConformityScore._beta_optimize(\n",
709+
" beta_np = BaseRegressionScore._beta_optimize(\n",
709710
" alpha_np,\n",
710711
" conformity_scores.reshape(1, -1),\n",
711712
" conformity_scores.reshape(1, -1),\n",
712713
" )\n",
713714
" alpha_low, alpha_up = beta_np, 1 - alpha_np + beta_np\n",
714715
"\n",
715-
" lower_quantiles = ConformityScore.get_quantile(\n",
716+
" lower_quantiles = BaseConformityScore.get_quantile(\n",
716717
" conformity_scores[..., np.newaxis],\n",
717718
" alpha_low, axis=0, reversed=True,\n",
718719
" unbounded=False\n",
719720
" )\n",
720721
"\n",
721-
" higher_quantiles = ConformityScore.get_quantile(\n",
722+
" higher_quantiles = BaseConformityScore.get_quantile(\n",
722723
" conformity_scores[..., np.newaxis],\n",
723724
" alpha_up, axis=0,\n",
724725
" unbounded=False\n",
@@ -729,7 +730,7 @@
729730
},
730731
{
731732
"cell_type": "code",
732-
"execution_count": 448,
733+
"execution_count": 652,
733734
"metadata": {},
734735
"outputs": [
735736
{
@@ -786,7 +787,7 @@
786787
},
787788
{
788789
"cell_type": "code",
789-
"execution_count": 449,
790+
"execution_count": 653,
790791
"metadata": {},
791792
"outputs": [
792793
{
@@ -864,7 +865,7 @@
864865
},
865866
{
866867
"cell_type": "code",
867-
"execution_count": 458,
868+
"execution_count": 654,
868869
"metadata": {},
869870
"outputs": [],
870871
"source": [
@@ -876,7 +877,7 @@
876877
},
877878
{
878879
"cell_type": "code",
879-
"execution_count": 459,
880+
"execution_count": 655,
880881
"metadata": {},
881882
"outputs": [],
882883
"source": [
@@ -890,7 +891,7 @@
890891
},
891892
{
892893
"cell_type": "code",
893-
"execution_count": 460,
894+
"execution_count": 656,
894895
"metadata": {},
895896
"outputs": [
896897
{
@@ -910,7 +911,7 @@
910911
},
911912
{
912913
"cell_type": "code",
913-
"execution_count": 461,
914+
"execution_count": 657,
914915
"metadata": {},
915916
"outputs": [
916917
{
@@ -930,7 +931,7 @@
930931
},
931932
{
932933
"cell_type": "code",
933-
"execution_count": 462,
934+
"execution_count": 658,
934935
"metadata": {},
935936
"outputs": [],
936937
"source": [
@@ -965,16 +966,16 @@
965966
},
966967
{
967968
"cell_type": "code",
968-
"execution_count": 463,
969+
"execution_count": 659,
969970
"metadata": {},
970971
"outputs": [
971972
{
972973
"data": {
973974
"text/plain": [
974-
"[<matplotlib.lines.Line2D at 0x1854c75e0>]"
975+
"[<matplotlib.lines.Line2D at 0x18672cd30>]"
975976
]
976977
},
977-
"execution_count": 463,
978+
"execution_count": 659,
978979
"metadata": {},
979980
"output_type": "execute_result"
980981
},
@@ -1012,16 +1013,16 @@
10121013
},
10131014
{
10141015
"cell_type": "code",
1015-
"execution_count": 464,
1016+
"execution_count": 660,
10161017
"metadata": {},
10171018
"outputs": [
10181019
{
10191020
"data": {
10201021
"text/plain": [
1021-
"<matplotlib.legend.Legend at 0x18551cdf0>"
1022+
"<matplotlib.legend.Legend at 0x186665900>"
10221023
]
10231024
},
1024-
"execution_count": 464,
1025+
"execution_count": 660,
10251026
"metadata": {},
10261027
"output_type": "execute_result"
10271028
},
@@ -1054,16 +1055,16 @@
10541055
},
10551056
{
10561057
"cell_type": "code",
1057-
"execution_count": 465,
1058+
"execution_count": 661,
10581059
"metadata": {},
10591060
"outputs": [
10601061
{
10611062
"data": {
10621063
"text/plain": [
1063-
"<matplotlib.legend.Legend at 0x185621690>"
1064+
"<matplotlib.legend.Legend at 0x1854386a0>"
10641065
]
10651066
},
1066-
"execution_count": 465,
1067+
"execution_count": 661,
10671068
"metadata": {},
10681069
"output_type": "execute_result"
10691070
},

0 commit comments

Comments
 (0)