Skip to content

Commit e364122

Browse files
authored
Merge pull request #47 from simai-ml/minor-fixes-before-release
Fix quickstart example
2 parents 588f71c + a7c7ee3 commit e364122

File tree

2 files changed

+14
-8
lines changed

2 files changed

+14
-8
lines changed

README.rst

Lines changed: 13 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -45,7 +45,7 @@ Prediction intervals output by **MAPIE** encompass both aleatoric and epistemic
4545

4646
Python 3.7+
4747

48-
**MAPIE** stands on the shoulders of giant.
48+
**MAPIE** stands on the shoulders of giants.
4949

5050
Its only internal dependency is `scikit-learn <https://scikit-learn.org/stable/>`_.
5151

@@ -89,11 +89,13 @@ and two standard deviations from the mean.
8989
.. code:: python
9090
9191
from mapie.estimators import MapieRegressor
92-
mapie = MapieRegressor(regressor)
92+
alpha = [0.05, 0.32]
93+
mapie = MapieRegressor(regressor, alpha=alpha)
9394
mapie.fit(X, y)
9495
y_preds = mapie.predict(X)
9596
9697
98+
9799
MAPIE returns a ``np.ndarray`` of shape (n_samples, 3, len(alpha)) giving the predictions,
98100
as well as the lower and upper bounds of the prediction intervals for the target quantile
99101
for each desired alpha value.
@@ -103,14 +105,18 @@ The estimated prediction intervals can then be plotted as follows.
103105
104106
from matplotlib import pyplot as plt
105107
from mapie.metrics import coverage_score
106-
plt.xlabel('x')
107-
plt.ylabel('y')
108+
plt.xlabel("x")
109+
plt.ylabel("y")
108110
plt.scatter(X, y, alpha=0.3)
109-
plt.plot(X, y_preds[:, 0], color='C1')
111+
plt.plot(X, y_preds[:, 0, 0], color="C1")
110112
order = np.argsort(X[:, 0])
111-
plt.fill_between(X[order].ravel(), y_preds[:, 1][order], y_preds[:, 2][order], alpha=0.3)
113+
plt.plot(X[order], y_preds[order][:, 1, 1], color="C1", ls="--")
114+
plt.plot(X[order], y_preds[order][:, 2, 1], color="C1", ls="--")
115+
plt.fill_between(X[order].ravel(), y_preds[:, 1, 0][order].ravel(), y_preds[:, 2, 0][order].ravel(), alpha=0.2)
116+
coverage_scores = [coverage_score(y, y_preds[:, 1, i], y_preds[:, 2, i]) for i, _ in enumerate(alpha)]
112117
plt.title(
113-
f"Target coverage = 0.9; Effective coverage = {coverage_score(y, y_preds[:, 1], y_preds[:, 2])}"
118+
f"Target and effective coverages for alpha={alpha[0]:.2f}: ({1-alpha[0]:.3f}, {coverage_scores[0]:.3f})\n" +
119+
f"Target and effective coverages for alpha={alpha[1]:.2f}: ({1-alpha[1]:.3f}, {coverage_scores[1]:.3f})"
114120
)
115121
plt.show()
116122

doc/quick_start.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -49,7 +49,7 @@ and two standard deviations from the mean.
4949
5050
from mapie.estimators import MapieRegressor
5151
alpha = [0.05, 0.32]
52-
mapie = MapieRegressor(regressor, alpha=alpha, method="plus")
52+
mapie = MapieRegressor(regressor, alpha=alpha)
5353
mapie.fit(X, y)
5454
y_preds = mapie.predict(X)
5555

0 commit comments

Comments
 (0)