|
31 | 31 |
|
32 | 32 | random_state = 42 |
33 | 33 |
|
34 | | - |
35 | 34 | METHODS = ["lac", "aps", "raps"] |
36 | 35 | WRONG_METHODS = ["scores", "cumulated", "test", "", 1, 2.5, (1, 2)] |
37 | 36 | WRONG_INCLUDE_LABELS = ["randomised", "True", "False", "other", 1, 2.5, (1, 2)] |
@@ -1999,9 +1998,9 @@ def test_predict_parameters_passing() -> None: |
1999 | 1998 |
|
2000 | 1999 | expected_conformity_scores = np.ones((X_train.shape[0], 1)) |
2001 | 2000 | y_pred = mapie_model.predict(X_test, agg_scores="mean", **predict_params) |
2002 | | - np.testing.assert_allclose(mapie_model.conformity_scores_, |
2003 | | - expected_conformity_scores) |
2004 | | - np.testing.assert_allclose(y_pred, 0) |
| 2001 | + np.testing.assert_equal(mapie_model.conformity_scores_, |
| 2002 | + expected_conformity_scores) |
| 2003 | + np.testing.assert_equal(y_pred, 0) |
2005 | 2004 |
|
2006 | 2005 |
|
2007 | 2006 | def test_with_no_predict_parameters_passing() -> None: |
@@ -2069,9 +2068,9 @@ def test_predict_params_expected_behavior_unaffected_by_fit_params() -> None: |
2069 | 2068 |
|
2070 | 2069 | expected_conformity_scores = np.ones((X_train.shape[0], 1)) |
2071 | 2070 |
|
2072 | | - np.testing.assert_allclose(mapie_model.conformity_scores_, |
2073 | | - expected_conformity_scores) |
2074 | | - np.testing.assert_allclose(y_pred, 0) |
| 2071 | + np.testing.assert_equal(mapie_model.conformity_scores_, |
| 2072 | + expected_conformity_scores) |
| 2073 | + np.testing.assert_equal(y_pred, 0) |
2075 | 2074 |
|
2076 | 2075 |
|
2077 | 2076 | def test_using_one_predict_parameter_into_predict_but_not_in_fit() -> None: |
|
0 commit comments