@@ -519,26 +519,6 @@ def test_linear_regression_results(strategy: str) -> None:
519519 np .testing .assert_allclose (coverage , COVERAGES [strategy ], rtol = 1e-2 )
520520
521521
522- @pytest .mark .parametrize ("estimator" , [- 1 , 3 , 0.2 ])
523- def test_quantile_prefit_non_list (estimator : Any ) -> None :
524- """
525- Test that there is a list of estimators provided when cv='prefit'
526- is called for MapieQuantileRegressor.
527- """
528- with pytest .raises (
529- ValueError ,
530- match = r".*Estimator for prefit must be an iterable object.*" ,
531- ):
532- mapie_reg = MapieQuantileRegressor (
533- estimator = estimator ,
534- cv = "prefit"
535- )
536- mapie_reg .fit (
537- X_calib_toy ,
538- y_calib_toy
539- )
540-
541-
542522def test_quantile_prefit_three_estimators () -> None :
543523 """
544524 Test that there is a list with three estimators provided for
@@ -669,8 +649,8 @@ def test_prefit_and_non_prefit_equal(alpha: float) -> None:
669649@pytest .mark .parametrize ("alpha" , [0.05 , 0.1 , 0.2 , 0.3 ])
670650def test_prefit_different_type_list_tuple_array (alpha : float ) -> None :
671651 """
672- Check that as long as the estimators are given in a Iterable object,
673- the we have the same results for each.}
652+ Check that the type of Iterable (list, np.array, tuple) to
653+ estimators gives similar results.
674654 """
675655 list_estimators = []
676656 alphas_ = [alpha / 2 , 1 - (alpha / 2 ), 0.5 ]
0 commit comments