Skip to content

Commit 0aefe55

Browse files
rename feature names to feature_names_out_
1 parent 52335ff commit 0aefe55

21 files changed

+70
-46
lines changed

category_encoders/backward_difference.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -38,7 +38,7 @@ class BackwardDifferenceEncoder(BaseContrastEncoder):
3838
>>> from sklearn.datasets import load_boston
3939
>>> bunch = load_boston()
4040
>>> y = bunch.target
41-
>>> X = pd.DataFrame(bunch.data, columns=bunch.feature_names)
41+
>>> X = pd.DataFrame(bunch.data, columns=bunch.feature_names_out_)
4242
>>> enc = BackwardDifferenceEncoder(cols=['CHAS', 'RAD']).fit(X, y)
4343
>>> numeric_dataset = enc.transform(X)
4444
>>> print(numeric_dataset.info())

category_encoders/basen.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -65,7 +65,7 @@ class BaseNEncoder(util.BaseEncoder, util.UnsupervisedTransformerMixin):
6565
>>> from sklearn.datasets import load_boston
6666
>>> bunch = load_boston()
6767
>>> y = bunch.target
68-
>>> X = pd.DataFrame(bunch.data, columns=bunch.feature_names)
68+
>>> X = pd.DataFrame(bunch.data, columns=bunch.feature_names_out_)
6969
>>> enc = BaseNEncoder(cols=['CHAS', 'RAD']).fit(X, y)
7070
>>> numeric_dataset = enc.transform(X)
7171
>>> print(numeric_dataset.info())
@@ -180,7 +180,7 @@ def inverse_transform(self, X_in):
180180
raise ValueError('Must train encoder before it can be used to inverse_transform data')
181181

182182
# unite the type into pandas dataframe (it makes the input size detection code easier...) and make deep copy
183-
X = util.convert_input(X_in, columns=self.feature_names, deep=True)
183+
X = util.convert_input(X_in, columns=self.feature_names_out_, deep=True)
184184

185185
X = self.basen_to_integer(X, self.cols, self.base)
186186

category_encoders/binary.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -36,7 +36,7 @@ class BinaryEncoder(BaseNEncoder):
3636
>>> from sklearn.datasets import load_boston
3737
>>> bunch = load_boston()
3838
>>> y = bunch.target
39-
>>> X = pd.DataFrame(bunch.data, columns=bunch.feature_names)
39+
>>> X = pd.DataFrame(bunch.data, columns=bunch.feature_names_out_)
4040
>>> enc = BinaryEncoder(cols=['CHAS', 'RAD']).fit(X, y)
4141
>>> numeric_dataset = enc.transform(X)
4242
>>> print(numeric_dataset.info())

category_encoders/cat_boost.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -57,7 +57,7 @@ class CatBoostEncoder(util.BaseEncoder, util.SupervisedTransformerMixin):
5757
>>> from sklearn.datasets import load_boston
5858
>>> bunch = load_boston()
5959
>>> y = bunch.target
60-
>>> X = pd.DataFrame(bunch.data, columns=bunch.feature_names)
60+
>>> X = pd.DataFrame(bunch.data, columns=bunch.feature_names_out_)
6161
>>> enc = CatBoostEncoder(cols=['CHAS', 'RAD']).fit(X, y)
6262
>>> numeric_dataset = enc.transform(X)
6363
>>> print(numeric_dataset.info())

category_encoders/count.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -64,8 +64,8 @@ def __init__(self, verbose=0, cols=None, drop_invariant=False,
6464
combine_min_nan_groups: bool or dict of {column : bool, ...}.
6565
whether to combine the leftovers group with NaN group. Default True. Can
6666
also be forced to combine with 'force' meaning small groups are effectively
67-
counted as NaNs. Force can only used when 'handle_missing' is 'value' or 'error'.
68-
Note: Will not force if it creates an binary or invariant column.
67+
counted as NaNs. Force can only be used when 'handle_missing' is 'value' or 'error'.
68+
Note: Will not force if it creates a binary or invariant column.
6969
7070
7171
Example
@@ -76,7 +76,7 @@ def __init__(self, verbose=0, cols=None, drop_invariant=False,
7676
7777
>>> bunch = load_boston()
7878
>>> y = bunch.target
79-
>>> X = pd.DataFrame(bunch.data, columns=bunch.feature_names)
79+
>>> X = pd.DataFrame(bunch.data, columns=bunch.feature_names_out_)
8080
>>> enc = CountEncoder(cols=['CHAS', 'RAD']).fit(X, y)
8181
>>> numeric_dataset = enc.transform(X)
8282

category_encoders/glmm.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -63,7 +63,7 @@ class GLMMEncoder(util.BaseEncoder, util.SupervisedTransformerMixin):
6363
>>> from sklearn.datasets import load_boston
6464
>>> bunch = load_boston()
6565
>>> y = bunch.target > 22.5
66-
>>> X = pd.DataFrame(bunch.data, columns=bunch.feature_names)
66+
>>> X = pd.DataFrame(bunch.data, columns=bunch.feature_names_out_)
6767
>>> enc = GLMMEncoder(cols=['CHAS', 'RAD']).fit(X, y)
6868
>>> numeric_dataset = enc.transform(X)
6969
>>> print(numeric_dataset.info())

category_encoders/gray.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -43,7 +43,7 @@ class GrayEncoder(BaseNEncoder):
4343
>>> from sklearn.datasets import load_boston
4444
>>> bunch = load_boston()
4545
>>> y = bunch.target
46-
>>> X = pd.DataFrame(bunch.data, columns=bunch.feature_names)
46+
>>> X = pd.DataFrame(bunch.data, columns=bunch.feature_names_out_)
4747
>>> enc = GrayEncoder(cols=['CHAS', 'RAD']).fit(X, y)
4848
>>> numeric_dataset = enc.transform(X)
4949
>>> print(numeric_dataset.info())

category_encoders/hashing.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -63,7 +63,7 @@ class HashingEncoder(util.BaseEncoder, util.UnsupervisedTransformerMixin):
6363
>>> import pandas as pd
6464
>>> from sklearn.datasets import load_boston
6565
>>> bunch = load_boston()
66-
>>> X = pd.DataFrame(bunch.data, columns=bunch.feature_names)
66+
>>> X = pd.DataFrame(bunch.data, columns=bunch.feature_names_out_)
6767
>>> y = bunch.target
6868
>>> he = HashingEncoder(cols=['CHAS', 'RAD']).fit(X, y)
6969
>>> data = he.transform(X)

category_encoders/helmert.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -39,7 +39,7 @@ class HelmertEncoder(BaseContrastEncoder):
3939
>>> from sklearn.datasets import load_boston
4040
>>> bunch = load_boston()
4141
>>> y = bunch.target
42-
>>> X = pd.DataFrame(bunch.data, columns=bunch.feature_names)
42+
>>> X = pd.DataFrame(bunch.data, columns=bunch.feature_names_out_)
4343
>>> enc = HelmertEncoder(cols=['CHAS', 'RAD'], handle_unknown='value', handle_missing='value').fit(X, y)
4444
>>> numeric_dataset = enc.transform(X)
4545
>>> print(numeric_dataset.info())

category_encoders/james_stein.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -92,7 +92,7 @@ class JamesSteinEncoder(util.BaseEncoder, util.SupervisedTransformerMixin):
9292
>>> from sklearn.datasets import load_boston
9393
>>> bunch = load_boston()
9494
>>> y = bunch.target
95-
>>> X = pd.DataFrame(bunch.data, columns=bunch.feature_names)
95+
>>> X = pd.DataFrame(bunch.data, columns=bunch.feature_names_out_)
9696
>>> enc = JamesSteinEncoder(cols=['CHAS', 'RAD']).fit(X, y)
9797
>>> numeric_dataset = enc.transform(X)
9898
>>> print(numeric_dataset.info())

0 commit comments

Comments
 (0)