Skip to content

Commit b8a1901

Browse files
Merge pull request #427 from tvdboom/handle_pd_na
convert pd.NA to np.nan
2 parents eaf35b6 + fd8a6e1 commit b8a1901

File tree

2 files changed

+19
-11
lines changed

2 files changed

+19
-11
lines changed

category_encoders/ordinal.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -193,9 +193,9 @@ def ordinal_encoding(X_in, mapping=None, cols=None, handle_unknown='value', hand
193193
column = switch.get('col')
194194
col_mapping = switch['mapping']
195195

196-
# Treat None as np.nan
197-
X[column] = pd.Series([el if el is not None else np.NaN for el in X[column]], index=X[column].index)
198-
X[column] = X[column].map(col_mapping)
196+
# Convert to object to accept np.nan (dtype string doesn't)
197+
# fillna changes None and pd.NA to np.nan
198+
X[column] = X[column].astype("object").fillna(np.nan).map(col_mapping)
199199
if util.is_category(X[column].dtype):
200200
nan_identity = col_mapping.loc[col_mapping.index.isna()].array[0]
201201
X[column] = X[column].cat.add_categories(nan_identity)

tests/test_encoders.py

Lines changed: 16 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -149,6 +149,7 @@ def test_handle_unknown_error(self):
149149
def test_handle_missing_error(self):
150150
non_null = pd.DataFrame({'city': ['chicago', 'los angeles'], 'color': ['red', np.nan]}) # only 'city' column is going to be transformed
151151
has_null = pd.DataFrame({'city': ['chicago', np.nan], 'color': ['red', np.nan]})
152+
has_null_pd = pd.DataFrame({'city': ['chicago', pd.NA], 'color': ['red', pd.NA]}, dtype="string")
152153
y = pd.Series([1, 0])
153154

154155
for encoder_name in (set(encoders.__all__) - {'HashingEncoder'}): # HashingEncoder supports new values by design -> excluded
@@ -158,6 +159,9 @@ def test_handle_missing_error(self):
158159
with self.assertRaises(ValueError):
159160
enc.fit(has_null, y)
160161

162+
with self.assertRaises(ValueError):
163+
enc.fit(has_null_pd, y)
164+
161165
enc.fit(non_null, y) # we raise an error only if a missing value is in one of the transformed columns
162166

163167
with self.assertRaises(ValueError):
@@ -199,13 +203,15 @@ def test_handle_unknown_return_nan(self):
199203
self.assertTrue(result[1:].isna().all())
200204

201205
def test_handle_missing_return_nan_train(self):
202-
X = pd.DataFrame({'city': ['chicago', 'los angeles', np.NaN]})
206+
X_np = pd.DataFrame({'city': ['chicago', 'los angeles', np.NaN]})
207+
X_pd = pd.DataFrame({'city': ['chicago', 'los angeles', pd.NA]}, dtype="string")
203208
y = pd.Series([1, 0, 1])
204209

205210
for encoder_name in (set(encoders.__all__) - {'HashingEncoder'}): # HashingEncoder supports new values by design -> excluded
206-
with self.subTest(encoder_name=encoder_name):
207-
enc = getattr(encoders, encoder_name)(handle_missing='return_nan')
208-
result = enc.fit_transform(X, y).iloc[2, :]
211+
for X in (X_np, X_pd):
212+
with self.subTest(encoder_name=encoder_name):
213+
enc = getattr(encoders, encoder_name)(handle_missing='return_nan')
214+
result = enc.fit_transform(X, y).iloc[2, :]
209215

210216
if len(result) == 1:
211217
self.assertTrue(result.isna().all())
@@ -214,13 +220,15 @@ def test_handle_missing_return_nan_train(self):
214220

215221
def test_handle_missing_return_nan_test(self):
216222
X = pd.DataFrame({'city': ['chicago', 'los angeles', 'chicago']})
217-
X_t = pd.DataFrame({'city': ['chicago', 'los angeles', np.NaN]})
223+
X_np = pd.DataFrame({'city': ['chicago', 'los angeles', np.NaN]})
224+
X_pd = pd.DataFrame({'city': ['chicago', 'los angeles', pd.NA]}, dtype="string")
218225
y = pd.Series([1, 0, 1])
219226

220227
for encoder_name in (set(encoders.__all__) - {'HashingEncoder'}): # HashingEncoder supports new values by design -> excluded
221-
with self.subTest(encoder_name=encoder_name):
222-
enc = getattr(encoders, encoder_name)(handle_missing='return_nan')
223-
result = enc.fit(X, y).transform(X_t).iloc[2, :]
228+
for X_na in (X_np, X_pd):
229+
with self.subTest(encoder_name=encoder_name):
230+
enc = getattr(encoders, encoder_name)(handle_missing='return_nan')
231+
result = enc.fit(X, y).transform(X_na).iloc[2, :]
224232

225233
if len(result) == 1:
226234
self.assertTrue(result.isna().all())

0 commit comments

Comments
 (0)