|
| 1 | +:orphan: |
| 2 | + |
| 3 | +.. _examples: |
| 4 | + |
| 5 | +Examples |
| 6 | +======== |
| 7 | + |
| 8 | +Below is a gallery of examples. |
| 9 | + |
| 10 | + |
| 11 | +.. raw:: html |
| 12 | + |
| 13 | + <div class="sphx-glr-thumbnails"> |
| 14 | + |
| 15 | +.. thumbnail-parent-div-open |
| 16 | +
|
| 17 | +.. raw:: html |
| 18 | + |
| 19 | + <div class="sphx-glr-thumbcontainer" tooltip="In this examples, we will compare the robustness of the three feature selection methods on affine transformed features."> |
| 20 | + |
| 21 | +.. only:: html |
| 22 | + |
| 23 | + .. image:: /auto_examples/images/thumb/sphx_glr_plot_affinity_thumb.png |
| 24 | + :alt: |
| 25 | + |
| 26 | + :ref:`sphx_glr_auto_examples_plot_affinity.py` |
| 27 | + |
| 28 | +.. raw:: html |
| 29 | + |
| 30 | + <div class="sphx-glr-thumbnail-title">Affine Invariance</div> |
| 31 | + </div> |
| 32 | + |
| 33 | + |
| 34 | +.. raw:: html |
| 35 | + |
| 36 | + <div class="sphx-glr-thumbcontainer" tooltip="In this examples, we will compare the computational speed of three different feature selection methods: h-correlation based FastCan, eta-cosine based FastCan, and baseline model based on sklearn.cross_decomposition.CCA."> |
| 37 | + |
| 38 | +.. only:: html |
| 39 | + |
| 40 | + .. image:: /auto_examples/images/thumb/sphx_glr_plot_speed_thumb.png |
| 41 | + :alt: |
| 42 | + |
| 43 | + :ref:`sphx_glr_auto_examples_plot_speed.py` |
| 44 | + |
| 45 | +.. raw:: html |
| 46 | + |
| 47 | + <div class="sphx-glr-thumbnail-title">Computational speed comparison</div> |
| 48 | + </div> |
| 49 | + |
| 50 | + |
| 51 | +.. raw:: html |
| 52 | + |
| 53 | + <div class="sphx-glr-thumbcontainer" tooltip="In this examples, we will compare the performance of feature selectors on the datasets, which contain redundant features. Here four types of features should be distinguished:"> |
| 54 | + |
| 55 | +.. only:: html |
| 56 | + |
| 57 | + .. image:: /auto_examples/images/thumb/sphx_glr_plot_redundancy_thumb.png |
| 58 | + :alt: |
| 59 | + |
| 60 | + :ref:`sphx_glr_auto_examples_plot_redundancy.py` |
| 61 | + |
| 62 | +.. raw:: html |
| 63 | + |
| 64 | + <div class="sphx-glr-thumbnail-title">Feature selection performance on redundant features</div> |
| 65 | + </div> |
| 66 | + |
| 67 | + |
| 68 | +.. thumbnail-parent-div-close |
| 69 | +
|
| 70 | +.. raw:: html |
| 71 | + |
| 72 | + </div> |
| 73 | + |
| 74 | + |
| 75 | +.. toctree:: |
| 76 | + :hidden: |
| 77 | + |
| 78 | + /auto_examples/plot_affinity |
| 79 | + /auto_examples/plot_speed |
| 80 | + /auto_examples/plot_redundancy |
| 81 | + |
| 82 | + |
| 83 | +.. only:: html |
| 84 | + |
| 85 | + .. container:: sphx-glr-footer sphx-glr-footer-gallery |
| 86 | + |
| 87 | + .. container:: sphx-glr-download sphx-glr-download-python |
| 88 | + |
| 89 | + :download:`Download all examples in Python source code: auto_examples_python.zip </auto_examples/auto_examples_python.zip>` |
| 90 | + |
| 91 | + .. container:: sphx-glr-download sphx-glr-download-jupyter |
| 92 | + |
| 93 | + :download:`Download all examples in Jupyter notebooks: auto_examples_jupyter.zip </auto_examples/auto_examples_jupyter.zip>` |
| 94 | + |
| 95 | + |
| 96 | +.. only:: html |
| 97 | + |
| 98 | + .. rst-class:: sphx-glr-signature |
| 99 | + |
| 100 | + `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_ |
0 commit comments