1- FastCan: A Fast Canonical-Correlation-Based Feature Selection Method
2- ====================================================================
1+ FastCan: A Fast Canonical-Correlation-Based Feature Selection Algorithm
2+ =======================================================================
33|conda | |Codecov | |CI | |Doc | |PythonVersion | |PyPi | |Black | |ruff | |pixi |
44
55.. |conda | image :: https://img.shields.io/conda/vn/conda-forge/fastcan.svg
@@ -29,6 +29,16 @@ FastCan: A Fast Canonical-Correlation-Based Feature Selection Method
2929.. |pixi | image :: https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/prefix-dev/pixi/main/assets/badge/v0.json&style=flat-square
3030 :target: https://pixi.sh
3131
32+ FastCan is a feature selection method, which has following advantages:
33+
34+ #. Extremely **fast **. See :ref: `sphx_glr_auto_examples_plot_speed.py `.
35+
36+ #. Support unsupervised feature selection.
37+
38+ #. Support multioutput feature selection.
39+
40+ #. Skip redundant features.
41+
3242
3343Installation
3444------------
@@ -41,25 +51,22 @@ Or via conda-forge:
4151
4252* Run ``conda install -c conda-forge fastcan ``
4353
44- Examples
45- --------
54+ Getting Started
55+ ---------------
4656>>> from fastcan import FastCan
47- >>> X = [[ 0.87 , - 1.34 , 0.31 ],
48- ... [- 2.79 , - 0.02 , - 0.85 ],
49- ... [- 1.34 , - 0.48 , - 2.55 ],
50- ... [ 1.92 , 1.48 , 0.65 ]]
51- >>> y = [0 , 1 , 0 , 1 ]
52- >>> selector = FastCan(n_features_to_select = 2 , verbose = 0 ).fit(X, y)
53- >>> selector.get_support()
54- array([ True, True, False])
57+ >>> X = [[1 , 0 ], [0 , 1 ]]
58+ >>> y = [1 , 0 ]
59+ >>> FastCan(verbose = 0 ).fit(X, y).get_support()
60+ array([ True, False])
5561
62+ Check :ref: `User Guild <user_guide >` and :ref: `Examples <examples >` for more information.
5663
5764Citation
5865--------
5966
6067FastCan is a Python implementation of the following papers.
6168
62- If you use the `h-correlation ` algorithm in your work please cite the following reference:
69+ If you use the `h-correlation ` method in your work please cite the following reference:
6370
6471.. code :: bibtex
6572
@@ -76,7 +83,7 @@ If you use the `h-correlation` algorithm in your work please cite the following
7683 keywords = {Feature selection, Orthogonal least squares, Canonical correlation analysis, Linear discriminant analysis, Multi-label, Multivariate time series, Feature interaction},
7784 }
7885
79- If you use the `eta-cosine ` algorithm in your work please cite the following reference:
86+ If you use the `eta-cosine ` method in your work please cite the following reference:
8087
8188.. code :: bibtex
8289
0 commit comments