Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion fastcan/narx/_base.py
Original file line number Diff line number Diff line change
Expand Up @@ -205,7 +205,7 @@ def fit(self, X, y, sample_weight=None, coef_init=None, **params):
"""
none_inputs = False
if X is None: # Auto-regressive model
X = np.empty((1, 0), dtype=float) # Skip validation
X = np.empty((1, 0), dtype=float, order="C") # Skip validation
none_inputs = True
check_X_params = dict(
dtype=float, order="C", ensure_all_finite="allow-nan", ensure_min_features=0
Expand Down Expand Up @@ -572,6 +572,7 @@ def predict(self, X, y_init=None):
y_init,
ensure_2d=False,
dtype=float,
order="C",
ensure_min_samples=0,
ensure_all_finite="allow-nan",
)
Expand Down
116 changes: 62 additions & 54 deletions fastcan/narx/tests/test_narx.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,60 +43,68 @@ def test_time_ids():
@pytest.mark.parametrize("nan", [False, True])
def test_narx(nan, multi_output):
"""Test NARX"""
if multi_output:
rng = np.random.default_rng(12345)
n_samples = 1000
max_delay = 3
e0 = rng.normal(0, 0.1, n_samples)
e1 = rng.normal(0, 0.02, n_samples)
u0 = rng.uniform(0, 1, n_samples + max_delay)
u1 = rng.normal(0, 0.1, n_samples + max_delay)
y0 = np.zeros(n_samples + max_delay)
y1 = np.zeros(n_samples + max_delay)
for i in range(max_delay, n_samples + max_delay):
y0[i] = (
0.5 * y0[i - 1]
+ 0.8 * y1[i - 1]
+ 0.3 * u0[i] ** 2
+ 2 * u0[i - 1] * u0[i - 3]
+ 1.5 * u0[i - 2] * u1[i - 3]
+ 1
)
y1[i] = (
0.6 * y1[i - 1]
- 0.2 * y0[i - 1] * y1[i - 2]
+ 0.3 * u1[i] ** 2
+ 1.5 * u1[i - 2] * u0[i - 3]
+ 0.5
)
y = np.c_[y0[max_delay:] + e0, y1[max_delay:] + e1]
X = np.c_[u0[max_delay:], u1[max_delay:]]
n_outputs = 2
else:
rng = np.random.default_rng(12345)
n_samples = 1000
max_delay = 3
e = rng.normal(0, 0.1, n_samples)
u0 = rng.uniform(0, 1, n_samples + max_delay)
u1 = rng.normal(0, 0.1, n_samples)
y = np.zeros(n_samples + max_delay)
for i in range(max_delay, n_samples + max_delay):
y[i] = (
0.5 * y[i - 1]
+ 0.3 * u0[i] ** 2
+ 2 * u0[i - 1] * u0[i - 3]
+ 1.5 * u0[i - 2] * u1[i - max_delay]
+ 1
)
y = y[max_delay:] + e
X = np.c_[u0[max_delay:], u1]
n_outputs = 1

if nan:
X_nan_ids = rng.choice(n_samples, 20, replace=False)
y_nan_ids = rng.choice(n_samples, 10, replace=False)
X[X_nan_ids] = np.nan
y[y_nan_ids] = np.nan
def make_data(multi_output, nan, rng):
if multi_output:
n_samples = 1000
max_delay = 3
e0 = rng.normal(0, 0.1, n_samples)
e1 = rng.normal(0, 0.02, n_samples)
u0 = rng.uniform(0, 1, n_samples + max_delay)
u1 = rng.normal(0, 0.1, n_samples + max_delay)
y0 = np.zeros(n_samples + max_delay)
y1 = np.zeros(n_samples + max_delay)
for i in range(max_delay, n_samples + max_delay):
y0[i] = (
0.5 * y0[i - 1]
+ 0.8 * y1[i - 1]
+ 0.3 * u0[i] ** 2
+ 2 * u0[i - 1] * u0[i - 3]
+ 1.5 * u0[i - 2] * u1[i - 3]
+ 1
)
y1[i] = (
0.6 * y1[i - 1]
- 0.2 * y0[i - 1] * y1[i - 2]
+ 0.3 * u1[i] ** 2
+ 1.5 * u1[i - 2] * u0[i - 3]
+ 0.5
)
y = np.c_[y0[max_delay:] + e0, y1[max_delay:] + e1]
X = np.c_[u0[max_delay:], u1[max_delay:]]
n_outputs = 2
else:
rng = np.random.default_rng(12345)
n_samples = 1000
max_delay = 3
e = rng.normal(0, 0.1, n_samples)
u0 = rng.uniform(0, 1, n_samples + max_delay)
u1 = rng.normal(0, 0.1, n_samples)
y = np.zeros(n_samples + max_delay)
for i in range(max_delay, n_samples + max_delay):
y[i] = (
0.5 * y[i - 1]
+ 0.3 * u0[i] ** 2
+ 2 * u0[i - 1] * u0[i - 3]
+ 1.5 * u0[i - 2] * u1[i - max_delay]
+ 1
)
y = y[max_delay:] + e
X = np.c_[u0[max_delay:], u1]
n_outputs = 1

if nan:
X_nan_ids = rng.choice(n_samples, 20, replace=False)
y_nan_ids = rng.choice(n_samples, 10, replace=False)
X[X_nan_ids] = np.nan
y[y_nan_ids] = np.nan

X = np.asfortranarray(X)
y = np.asfortranarray(y)
return X, y, n_outputs

rng = np.random.default_rng(12345)
X, y, n_outputs = make_data(multi_output, nan, rng)

if multi_output:
narx_score = make_narx(
Expand Down Expand Up @@ -178,7 +186,7 @@ def test_narx(nan, multi_output):
assert np.any(narx_osa_msa_coef != narx_array_init_msa.coef_)

if multi_output:
y_init = np.ones((narx_array_init_msa.max_delay_, n_outputs))
y_init = np.ones((narx_array_init_msa.max_delay_, n_outputs), order="F")
else:
y_init = [1] * narx_array_init_msa.max_delay_
y_hat = narx_array_init_msa.predict(X, y_init=y_init)
Expand Down
Loading