@@ -111,15 +111,15 @@ def get_plot_data(self, leaf_separation=1, log_size=False):
111111 cluster_y_coords = {root : 0.0 }
112112
113113 for cluster in range (last_leaf , root - 1 , - 1 ):
114- split = self ._raw_tree [['child' , 'lambda ' ]]
114+ split = self ._raw_tree [['child' , 'lambda_val ' ]]
115115 split = split [(self ._raw_tree ['parent' ] == cluster ) &
116116 (self ._raw_tree ['child_size' ] > 1 )]
117117 if len (split ['child' ]) > 1 :
118118 left_child , right_child = split ['child' ]
119119 cluster_x_coords [cluster ] = np .mean ([cluster_x_coords [left_child ],
120120 cluster_x_coords [right_child ]])
121- cluster_y_coords [left_child ] = split ['lambda ' ][0 ]
122- cluster_y_coords [right_child ] = split ['lambda ' ][1 ]
121+ cluster_y_coords [left_child ] = split ['lambda_val ' ][0 ]
122+ cluster_y_coords [right_child ] = split ['lambda_val ' ][1 ]
123123
124124 # We use bars to plot the 'icicles', so we need to generate centers, tops,
125125 # bottoms and widths for each rectangle. We can go through each cluster
@@ -150,20 +150,20 @@ def get_plot_data(self, leaf_separation=1, log_size=False):
150150 cluster_bounds [c ][CB_LEFT ] = cluster_x_coords [c ] * scaling - (current_size / 2.0 )
151151 cluster_bounds [c ][CB_RIGHT ] = cluster_x_coords [c ] * scaling + (current_size / 2.0 )
152152 cluster_bounds [c ][CB_BOTTOM ] = cluster_y_coords [c ]
153- cluster_bounds [c ][CB_TOP ] = np .max (c_children ['lambda ' ])
153+ cluster_bounds [c ][CB_TOP ] = np .max (c_children ['lambda_val ' ])
154154
155- for i in np .argsort (c_children ['lambda ' ]):
155+ for i in np .argsort (c_children ['lambda_val ' ]):
156156 row = c_children [i ]
157- if row ['lambda ' ] != current_lambda :
157+ if row ['lambda_val ' ] != current_lambda :
158158 bar_centers .append (cluster_x_coords [c ] * scaling )
159- bar_tops .append (row ['lambda ' ] - current_lambda )
159+ bar_tops .append (row ['lambda_val ' ] - current_lambda )
160160 bar_bottoms .append (current_lambda )
161161 bar_widths .append (current_size )
162162 if log_size :
163163 current_size = np .log (np .exp (current_size ) - row ['child_size' ])
164164 else :
165165 current_size -= row ['child_size' ]
166- current_lambda = row ['lambda ' ]
166+ current_lambda = row ['lambda_val ' ]
167167
168168 # Finally we need the horizontal lines that occur at cluster splits.
169169 line_xs = []
@@ -349,15 +349,15 @@ def to_pandas(self):
349349 """Return a pandas dataframe representation of the condensed tree.
350350
351351 Each row of the dataframe corresponds to an edge in the tree.
352- The columns of the dataframe are `parent`, `child`, `lambda `
352+ The columns of the dataframe are `parent`, `child`, `lambda_val `
353353 and `child_size`.
354354
355355 The `parent` and `child` are the ids of the
356356 parent and child nodes in the tree. Node ids less than the number
357357 of points in the original dataset represent individual points, while
358358 ids greater than the number of points are clusters.
359359
360- The `lambda ` value is the value (1/distance) at which the `child`
360+ The `lambda_val ` value is the value (1/distance) at which the `child`
361361 node leaves the cluster.
362362
363363 The `child_size` is the number of points in the `child` node.
@@ -389,7 +389,7 @@ def to_networkx(self):
389389
390390 result = DiGraph ()
391391 for row in self ._raw_tree :
392- result .add_edge (row ['parent' ], row ['child' ], weight = row ['lambda ' ])
392+ result .add_edge (row ['parent' ], row ['child' ], weight = row ['lambda_val ' ])
393393
394394 set_node_attributes (result , 'size' , dict (self ._raw_tree [['child' , 'child_size' ]]))
395395
0 commit comments