@@ -71,6 +71,13 @@ def _hdbscan_generic(X, min_samples=5, alpha=1.0, metric='minkowski', p=2,
7171 distance_matrix = pairwise_distances (X , metric = metric , p = p )
7272 elif metric == 'arccos' :
7373 distance_matrix = pairwise_distances (X , metric = 'cosine' , ** kwargs )
74+ elif metric == 'precomputed' :
75+ # Treating this case explicitly, instead of letting
76+ # sklearn.metrics.pairwise_distances handle it,
77+ # enables the usage of numpy.inf in the distance
78+ # matrix to indicate missing distance information.
79+ # TODO: Check if copying is necessary
80+ distance_matrix = X .copy ()
7481 else :
7582 distance_matrix = pairwise_distances (X , metric = metric , ** kwargs )
7683
@@ -86,6 +93,13 @@ def _hdbscan_generic(X, min_samples=5, alpha=1.0, metric='minkowski', p=2,
8693
8794 min_spanning_tree = mst_linkage_core (mutual_reachability_ )
8895
96+ # Warn if the MST couldn't be constructed around the missing distances
97+ if np .isinf (min_spanning_tree .T [2 ]).any ():
98+ warn ('The minimum spanning tree contains edge weights with value '
99+ 'infinity. Potentially, you are missing too many distances '
100+ 'in the initial distance matrix for the given neighborhood '
101+ 'size.' , UserWarning )
102+
89103 # mst_linkage_core does not generate a full minimal spanning tree
90104 # If a tree is required then we must build the edges from the information
91105 # returned by mst_linkage_core (i.e. just the order of points to be merged)
@@ -282,6 +296,14 @@ def _hdbscan_boruvka_balltree(X, min_samples=5, alpha=1.0,
282296 return single_linkage_tree , None
283297
284298
299+ def check_precomputed_distance_matrix (X ):
300+ """Perform check_array(X) after removing infinite values (numpy.inf) from the given distance matrix.
301+ """
302+ tmp = X .copy ()
303+ tmp [np .isinf (tmp )] = 1
304+ check_array (tmp )
305+
306+
285307def hdbscan (X , min_cluster_size = 5 , min_samples = None , alpha = 1.0 ,
286308 metric = 'minkowski' , p = 2 , leaf_size = 40 ,
287309 algorithm = 'best' , memory = Memory (cachedir = None , verbose = 0 ),
@@ -464,7 +486,13 @@ def hdbscan(X, min_cluster_size=5, min_samples=None, alpha=1.0,
464486 'Should be one of: "eom", "leaf"\n ' )
465487
466488 # Checks input and converts to an nd-array where possible
467- X = check_array (X , accept_sparse = 'csr' )
489+ if metric != 'precomputed' or issparse (X ):
490+ X = check_array (X , accept_sparse = 'csr' )
491+ else :
492+ # Only non-sparse, precomputed distance matrices are handled here
493+ # and thereby allowed to contain numpy.inf for missing distances
494+ check_precomputed_distance_matrix (X )
495+
468496 # Python 2 and 3 compliant string_type checking
469497 if isinstance (memory , six .string_types ):
470498 memory = Memory (cachedir = memory , verbose = 0 )
@@ -798,9 +826,16 @@ def fit(self, X, y=None):
798826 self : object
799827 Returns self
800828 """
801- X = check_array (X , accept_sparse = 'csr' )
802829 if self .metric != 'precomputed' :
830+ X = check_array (X , accept_sparse = 'csr' )
803831 self ._raw_data = X
832+ elif issparse (X ):
833+ # Handle sparse precomputed distance matrices separately
834+ X = check_array (X , accept_sparse = 'csr' )
835+ else :
836+ # Only non-sparse, precomputed distance matrices are allowed
837+ # to have numpy.inf values indicating missing distances
838+ check_precomputed_distance_matrix (X )
804839
805840 kwargs = self .get_params ()
806841 # prediction data only applies to the persistent model, so remove
0 commit comments