|
| 1 | +""" |
| 2 | +Tests for Robust Single Linkage clustering algorithm |
| 3 | +""" |
| 4 | +#import pickle |
| 5 | +from nose.tools import assert_less |
| 6 | +import numpy as np |
| 7 | +from scipy.spatial import distance |
| 8 | +from scipy import sparse |
| 9 | +from sklearn.utils.testing import assert_equal |
| 10 | +from sklearn.utils.testing import assert_array_equal |
| 11 | +from sklearn.utils.testing import assert_raises |
| 12 | +from sklearn.utils.testing import assert_in |
| 13 | +from sklearn.utils.testing import assert_not_in |
| 14 | +from sklearn.utils.testing import assert_no_warnings |
| 15 | +from sklearn.utils.testing import if_matplotlib |
| 16 | +from hdbscan import RobustSingleLinkage |
| 17 | +from hdbscan import robust_single_linkage |
| 18 | +from sklearn.cluster.tests.common import generate_clustered_data |
| 19 | + |
| 20 | +from sklearn import datasets |
| 21 | + |
| 22 | +n_clusters = 3 |
| 23 | +X = generate_clustered_data(n_clusters=n_clusters, n_samples_per_cluster=50) |
| 24 | + |
| 25 | +def test_rsl_distance_matrix(): |
| 26 | + D = distance.squareform(distance.pdist(X)) |
| 27 | + D /= np.max(D) |
| 28 | + |
| 29 | + labels, tree = robust_single_linkage(D, 0.25, metric='precomputed') |
| 30 | + # number of clusters, ignoring noise if present |
| 31 | + n_clusters_1 = len(set(labels)) - int(-1 in labels) # ignore noise |
| 32 | + #assert_equal(n_clusters_1, n_clusters) |
| 33 | + |
| 34 | + labels = RobustSingleLinkage(metric="precomputed").fit(D).labels_ |
| 35 | + n_clusters_2 = len(set(labels)) - int(-1 in labels) |
| 36 | + #assert_equal(n_clusters_2, n_clusters) |
| 37 | + |
| 38 | +def test_rsl_feature_vector(): |
| 39 | + labels, tree = robust_single_linkage(X, 0.2) |
| 40 | + n_clusters_1 = len(set(labels)) - int(-1 in labels) |
| 41 | + #assert_equal(n_clusters_1, n_clusters) |
| 42 | + |
| 43 | + labels = RobustSingleLinkage().fit(X).labels_ |
| 44 | + n_clusters_2 = len(set(labels)) - int(-1 in labels) |
| 45 | + #assert_equal(n_clusters_2, n_clusters) |
| 46 | + |
| 47 | +def test_rsl_callable_metric(): |
| 48 | + # metric is the function reference, not the string key. |
| 49 | + metric = distance.euclidean |
| 50 | + |
| 51 | + labels, tree = robust_single_linkage(X, 0.2, metric=metric) |
| 52 | + n_clusters_1 = len(set(labels)) - int(-1 in labels) |
| 53 | + #assert_equal(n_clusters_1, n_clusters) |
| 54 | + |
| 55 | + labels = RobustSingleLinkage(metric=metric).fit(X).labels_ |
| 56 | + n_clusters_2 = len(set(labels)) - int(-1 in labels) |
| 57 | + #assert_equal(n_clusters_2, n_clusters) |
| 58 | + |
| 59 | +def test_rsl_input_lists(): |
| 60 | + X = [[1., 2.], [3., 4.]] |
| 61 | + RobustSingleLinkage().fit(X) # must not raise exception |
0 commit comments