Skip to content

Commit 688b529

Browse files
committed
Minor changes to other cython
1 parent 05f29f0 commit 688b529

File tree

3 files changed

+7
-12
lines changed

3 files changed

+7
-12
lines changed

hdbscan/_hdbscan_linkage.pyx

Lines changed: 1 addition & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -3,15 +3,10 @@
33
# Authors: Leland McInnes, Steve Astels
44
# License: 3-clause BSD
55

6-
cimport cython
7-
8-
import numpy as np
96
cimport numpy as np
107

118
from libc.float cimport DBL_MAX
129

13-
from scipy.spatial.distance import cdist, pdist
14-
from dist_metrics import DistanceMetric
1510
from dist_metrics cimport DistanceMetric
1611

1712
cpdef np.ndarray[np.double_t, ndim=2] mst_linkage_core(
@@ -52,7 +47,7 @@ cpdef np.ndarray[np.double_t, ndim=2] mst_linkage_core(
5247

5348
return result
5449

55-
cpdef np.ndarray[np.double_t, ndim=2] mst_linkage_core_cdist(
50+
cpdef np.ndarray[np.double_t, ndim=2] mst_linkage_core_vector(
5651
np.ndarray[np.double_t, ndim=2, mode='c'] raw_data,
5752
np.ndarray[np.double_t, ndim=1, mode='c'] core_distances,
5853
DistanceMetric dist_metric,

hdbscan/_hdbscan_tree.pyx

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -36,7 +36,7 @@ cdef list bfs_from_hierarchy(np.ndarray[np.double_t, ndim=2] hierarchy, np.intp_
3636
return result
3737

3838
cpdef np.ndarray condense_tree(np.ndarray[np.double_t, ndim=2] hierarchy,
39-
np.intp_t min_cluster_size=10):
39+
np.intp_t min_cluster_size=10):
4040

4141
cdef np.intp_t root
4242
cdef np.intp_t num_points

hdbscan/hdbscan_.py

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -29,7 +29,7 @@
2929

3030
from ._hdbscan_linkage import (single_linkage,
3131
mst_linkage_core,
32-
mst_linkage_core_cdist,
32+
mst_linkage_core_vector,
3333
label)
3434
from ._hdbscan_tree import (condense_tree,
3535
compute_stability,
@@ -123,8 +123,8 @@ def _hdbscan_prims_kdtree(X, min_samples=5, alpha=1.0,
123123
core_distances = tree.query(X, k=min_samples,
124124
dualtree=True,
125125
breadth_first=True)[0][:, -1].copy(order='C')
126-
#Mutual reachability distance is implicite in mst_linkage_core_cdist
127-
min_spanning_tree = mst_linkage_core_cdist(X, core_distances, dist_metric, alpha)
126+
#Mutual reachability distance is implicite in mst_linkage_core_vector
127+
min_spanning_tree = mst_linkage_core_vector(X, core_distances, dist_metric, alpha)
128128

129129
#Sort edges of the min_spanning_tree by weight
130130
min_spanning_tree = min_spanning_tree[np.argsort(min_spanning_tree.T[2]), :]
@@ -161,8 +161,8 @@ def _hdbscan_prims_balltree(X, min_samples=5, alpha=1.0,
161161
dualtree=True,
162162
breadth_first=True)[0][:, -1].copy(order='C')
163163

164-
#Mutual reachability distance is implicite in mst_linkage_core_cdist
165-
min_spanning_tree = mst_linkage_core_cdist(X, core_distances, dist_metric, alpha)
164+
#Mutual reachability distance is implicite in mst_linkage_core_vector
165+
min_spanning_tree = mst_linkage_core_vector(X, core_distances, dist_metric, alpha)
166166
#Sort edges of the min_spanning_tree by weight
167167
min_spanning_tree = min_spanning_tree[np.argsort(min_spanning_tree.T[2]), :]
168168
#Convert edge list into standard hierarchical clustering format

0 commit comments

Comments
 (0)