Skip to content

Commit 7bcc9ab

Browse files
committed
Merge remote-tracking branch 'origin/master'
2 parents c18e1c4 + 7ca7f76 commit 7bcc9ab

File tree

5 files changed

+24
-7
lines changed

5 files changed

+24
-7
lines changed

.idea/hdbscan.iml

Lines changed: 1 addition & 1 deletion
Some generated files are not rendered by default. Learn more about customizing how changed files appear on GitHub.

.idea/inspectionProfiles/Project_Default.xml

Lines changed: 17 additions & 0 deletions
Some generated files are not rendered by default. Learn more about customizing how changed files appear on GitHub.

.idea/misc.xml

Lines changed: 1 addition & 1 deletion
Some generated files are not rendered by default. Learn more about customizing how changed files appear on GitHub.

README.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -149,7 +149,7 @@ Example usage:
149149
import hdbscan
150150
from sklearn.datasets import make_blobs
151151
152-
data = make_blobs(1000)
152+
data, _ = make_blobs(1000)
153153
154154
clusterer = hdbscan.RobustSingleLinkage(cut=0.125, k=7)
155155
cluster_labels = clusterer.fit_predict(data)

hdbscan/prediction.py

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -7,6 +7,7 @@
77

88
from sklearn.neighbors import KDTree, BallTree
99
from .dist_metrics import DistanceMetric
10+
from ._hdbscan_tree import compute_stability, labelling_at_cut, recurse_leaf_dfs
1011
from ._prediction_utils import (get_tree_row_with_child,
1112
dist_membership_vector,
1213
outlier_membership_vector,
@@ -93,7 +94,7 @@ def _recurse_leaf_dfs(self, current_node):
9394
return [current_node, ]
9495
else:
9596
return sum(
96-
[self._recurse_leaf_dfs(child) for child in children], [])
97+
[recurse_leaf_dfs(self.cluster_tree, child) for child in children], [])
9798

9899
def __init__(self, data, condensed_tree, min_samples,
99100
tree_type='kdtree', metric='euclidean', **kwargs):
@@ -443,7 +444,7 @@ def membership_vector(clusterer, points_to_predict):
443444
"""
444445

445446
clusters = np.array(
446-
list(clusterer.condensed_tree_._select_clusters())).astype(np.intp)
447+
sorted(list(clusterer.condensed_tree_._select_clusters()))).astype(np.intp)
447448

448449
result = np.empty((points_to_predict.shape[0], clusters.shape[0]),
449450
dtype=np.float64)
@@ -522,8 +523,7 @@ def all_points_membership_vectors(clusterer):
522523
:py:func:`hdbscan.predict.predict`
523524
:py:func:`hdbscan.predict.all_points_membership_vectors`
524525
"""
525-
clusters = np.array(list(clusterer.condensed_tree_._select_clusters()
526-
)).astype(np.intp)
526+
clusters = np.array(sorted(list(clusterer.condensed_tree_._select_clusters()))).astype(np.intp)
527527
all_points = clusterer.prediction_data_.raw_data
528528

529529
# When no clusters found, return array of 0's

0 commit comments

Comments
 (0)