@@ -278,8 +278,7 @@ def density_separation(X, labels, cluster_id1, cluster_id2,
278278
279279
280280def validity_index (X , labels , metric = 'euclidean' ,
281- d = None , per_cluster_scores = False , print_validity_components = False ,
282- print_max_euclid_to_coredist_ratios = False , mst_euclid_only = False , ** kwd_args ):
281+ d = None , per_cluster_scores = False , mst_euclid_only = False , verbose = False , ** kwd_args ):
283282 """
284283 Compute the density based cluster validity index for the
285284 clustering specified by `labels` and for each cluster in `labels`.
@@ -355,7 +354,7 @@ def validity_index(X, labels, metric='euclidean',
355354 metric ,
356355 d ,
357356 no_coredist = mst_euclid_only ,
358- print_max_euclid_to_coredist_ratios = print_max_euclid_to_coredist_ratios ,
357+ print_max_euclid_to_coredist_ratios = verbose ,
359358 ** kwd_args
360359 )
361360
@@ -398,7 +397,7 @@ def validity_index(X, labels, metric='euclidean',
398397 max (min_density_sep , density_sparseness [i ])
399398 )
400399
401- if print_validity_components :
400+ if verbose :
402401 print ("Minimum density separation: " + str (min_density_sep ))
403402 print ("Density sparseness: " + str (density_sparseness [i ]))
404403
0 commit comments