|
43 | 43 | |
44 | 44 | # |
45 | 45 | # License: BSD 3 clause |
46 | | - |
47 | | -# Supporting numpy prior to version 1.7 is a little painful ... |
48 | | -if hasattr(np, 'isclose'): |
49 | | - from numpy import isclose |
50 | | -else: |
51 | | - def isclose(a, b, rtol=1.e-5, atol=1.e-8, equal_nan=False): |
52 | | - |
53 | | - def within_tol(x, y, atol, rtol): |
54 | | - with np.errstate(invalid='ignore'): |
55 | | - result = np.less_equal(abs(x - y), atol + rtol * abs(y)) |
56 | | - if np.isscalar(a) and np.isscalar(b): |
57 | | - result = bool(result) |
58 | | - return result |
59 | | - |
60 | | - x = np.array(a, copy=False, subok=True, ndmin=1) |
61 | | - y = np.array(b, copy=False, subok=True, ndmin=1) |
62 | | - |
63 | | - # Make sure y is an inexact type to avoid bad behavior on abs(MIN_INT). |
64 | | - # This will cause casting of x later. Also, make sure to allow |
65 | | - # subclasses (e.g., for numpy.ma). |
66 | | - dt = np.core.multiarray.result_type(y, 1.) |
67 | | - y = np.array(y, dtype=dt, copy=False, subok=True) |
68 | | - |
69 | | - xfin = np.isfinite(x) |
70 | | - yfin = np.isfinite(y) |
71 | | - if np.all(xfin) and np.all(yfin): |
72 | | - return within_tol(x, y, atol, rtol) |
73 | | - else: |
74 | | - finite = xfin & yfin |
75 | | - cond = np.zeros_like(finite, subok=True) |
76 | | - # Because we're using boolean indexing, x & y must be the same |
77 | | - # shape. Ideally, we'd just do x, y = broadcast_arrays(x, y). |
78 | | - # It's in lib.stride_tricks, though, so we can't import it here. |
79 | | - x = x * np.ones_like(cond) |
80 | | - y = y * np.ones_like(cond) |
81 | | - # Avoid subtraction with infinite/nan values... |
82 | | - cond[finite] = within_tol(x[finite], y[finite], atol, rtol) |
83 | | - # Check for equality of infinite values... |
84 | | - cond[~finite] = (x[~finite] == y[~finite]) |
85 | | - if equal_nan: |
86 | | - # Make NaN == NaN |
87 | | - both_nan = np.isnan(x) & np.isnan(y) |
88 | | - cond[both_nan] = both_nan[both_nan] |
89 | | - |
90 | | - if np.isscalar(a) and np.isscalar(b): |
91 | | - return bool(cond) |
92 | | - else: |
93 | | - return cond |
94 | | - |
| 46 | +from numpy import isclose |
95 | 47 |
|
96 | 48 | def _tree_to_labels(X, single_linkage_tree, min_cluster_size=10, |
97 | 49 | cluster_selection_method='eom', |
|
0 commit comments