You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.rst
+15-15Lines changed: 15 additions & 15 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -176,34 +176,34 @@ The different algorithms are presented in the sphinx-gallery_.
176
176
References:
177
177
-----------
178
178
179
-
.. [1] : I. Tomek, “Two modifications of CNN,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 6, pp. 769-772, 1976. [`bib <references.bib#L148>`_]
179
+
.. [1] : I. Tomek, “Two modifications of CNN,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 6, pp. 769-772, 1976.
180
180
181
-
.. [2] : I. Mani, J. Zhang. “kNN approach to unbalanced data distributions: A case study involving information extraction,” In Proceedings of the Workshop on Learning from Imbalanced Data Sets, pp. 1-7, 2003. [`pdf <https://www.site.uottawa.ca/~nat/Workshop2003/jzhang.pdf>`_] [`bib <references.bib#L113>`_]
181
+
.. [2] : I. Mani, J. Zhang. “kNN approach to unbalanced data distributions: A case study involving information extraction,” In Proceedings of the Workshop on Learning from Imbalanced Data Sets, pp. 1-7, 2003.
182
182
183
-
.. [3] : P. E. Hart, “The condensed nearest neighbor rule,” IEEE Transactions on Information Theory, vol. 14(3), pp. 515-516, 1968. [`pdf <http://sci2s.ugr.es/keel/pdf/algorithm/articulo/hart1968.pdf>`_] [`bib <references.bib#L51>`_]
183
+
.. [3] : P. E. Hart, “The condensed nearest neighbor rule,” IEEE Transactions on Information Theory, vol. 14(3), pp. 515-516, 1968.
184
184
185
-
.. [4] : M. Kubat, S. Matwin, “Addressing the curse of imbalanced training sets: One-sided selection,” In Proceedings of the 14th International Conference on Machine Learning, vol. 97, pp. 179-186, 1997. [`pdf <http://sci2s.ugr.es/keel/pdf/algorithm/congreso/kubat97addressing.pdf>`_] [`bib <references.bib#L76>`_]
185
+
.. [4] : M. Kubat, S. Matwin, “Addressing the curse of imbalanced training sets: One-sided selection,” In Proceedings of the 14th International Conference on Machine Learning, vol. 97, pp. 179-186, 1997.
186
186
187
-
.. [5] : J. Laurikkala, “Improving identification of difficult small classes by balancing class distribution,” Proceedings of the 8th Conference on Artificial Intelligence in Medicine in Europe, pp. 63-66, 2001. [`pdf <https://pdfs.semanticscholar.org/0e75/4db8253e84cde4ade4b6f5ba768a6150569a.pdf>`_] [`bib <references.bib#L89>`_]
187
+
.. [5] : J. Laurikkala, “Improving identification of difficult small classes by balancing class distribution,” Proceedings of the 8th Conference on Artificial Intelligence in Medicine in Europe, pp. 63-66, 2001.
188
188
189
-
.. [6] : D. Wilson, “Asymptotic Properties of Nearest Neighbor Rules Using Edited Data,” IEEE Transactions on Systems, Man, and Cybernetrics, vol. 2(3), pp. 408-421, 1972. [`pdf <http://sci2s.ugr.es/keel/pdf/algorithm/articulo/1972-Wilson-IEEETSMC.pdf>`_] [`bib <references.bib#L168>`_]
189
+
.. [6] : D. Wilson, “Asymptotic Properties of Nearest Neighbor Rules Using Edited Data,” IEEE Transactions on Systems, Man, and Cybernetrics, vol. 2(3), pp. 408-421, 1972.
190
190
191
-
.. [7] : M. R. Smith, T. Martinez, C. Giraud-Carrier, “An instance level analysis of data complexity,” Machine learning, vol. 95(2), pp. 225-256, 2014. [`pdf <https://pdfs.semanticscholar.org/5796/8c07abe6a734977db47b08cf4c567733aede.pdf>`_] [`bib <references.bib#L136>`_]
191
+
.. [7] : M. R. Smith, T. Martinez, C. Giraud-Carrier, “An instance level analysis of data complexity,” Machine learning, vol. 95(2), pp. 225-256, 2014.
192
192
193
-
.. [8] : N. V. Chawla, K. W. Bowyer, L. O. Hall, W. P. Kegelmeyer, “SMOTE: Synthetic minority over-sampling technique,” Journal of Artificial Intelligence Research, vol. 16, pp. 321-357, 2002. [`pdf <http://www.jair.org/media/953/live-953-2037-jair.pdf>`_] [`bib <references.bib#L28>`_]
193
+
.. [8] : N. V. Chawla, K. W. Bowyer, L. O. Hall, W. P. Kegelmeyer, “SMOTE: Synthetic minority over-sampling technique,” Journal of Artificial Intelligence Research, vol. 16, pp. 321-357, 2002.
194
194
195
-
.. [9] : H. Han, W.-Y. Wang, B.-H. Mao, “Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning,” In Proceedings of the 1st International Conference on Intelligent Computing, pp. 878-887, 2005. [`pdf <http://sci2s.ugr.es/keel/pdf/specific/congreso/han_borderline_smote.pdf>`_] [`bib <references.bib#L38>`_]
195
+
.. [9] : H. Han, W.-Y. Wang, B.-H. Mao, “Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning,” In Proceedings of the 1st International Conference on Intelligent Computing, pp. 878-887, 2005.
196
196
197
-
.. [10] : H. M. Nguyen, E. W. Cooper, K. Kamei, “Borderline over-sampling for imbalanced data classification,” In Proceedings of the 5th International Workshop on computational Intelligence and Applications, pp. 24-29, 2009. [`pdf <http://ousar.lib.okayama-u.ac.jp/files/public/1/19617/20160528004522391723/IWCIA2009_A1005.pdf>`_] [`bib <references.bib#L126>`_]
197
+
.. [10] : H. M. Nguyen, E. W. Cooper, K. Kamei, “Borderline over-sampling for imbalanced data classification,” In Proceedings of the 5th International Workshop on computational Intelligence and Applications, pp. 24-29, 2009.
198
198
199
-
.. [11] : G. E. A. P. A. Batista, R. C. Prati, M. C. Monard, “A study of the behavior of several methods for balancing machine learning training data,” ACM Sigkdd Explorations Newsletter, vol. 6(1), pp. 20-29, 2004. [`pdf <http://sci2s.ugr.es/keel/dataset/includes/catImbFiles/2004-Batista-SIGKDD.pdf>`_] [`bib <references.bib#L15>`_]
199
+
.. [11] : G. E. A. P. A. Batista, R. C. Prati, M. C. Monard, “A study of the behavior of several methods for balancing machine learning training data,” ACM Sigkdd Explorations Newsletter, vol. 6(1), pp. 20-29, 2004.
200
200
201
-
.. [12] : G. E. A. P. A. Batista, A. L. C. Bazzan, M. C. Monard, “Balancing training data for automated annotation of keywords: A case study,” In Proceedings of the 2nd Brazilian Workshop on Bioinformatics, pp. 10-18, 2003. [`pdf <http://www.inf.ufrgs.br/maslab/pergamus/pubs/balancing-training-data-for.pdf>`_] [`bib <references.bib#L2>`_]
201
+
.. [12] : G. E. A. P. A. Batista, A. L. C. Bazzan, M. C. Monard, “Balancing training data for automated annotation of keywords: A case study,” In Proceedings of the 2nd Brazilian Workshop on Bioinformatics, pp. 10-18, 2003.
202
202
203
-
.. [13] : X.-Y. Liu, J. Wu and Z.-H. Zhou, “Exploratory undersampling for class-imbalance learning,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 39(2), pp. 539-550, 2009. [`pdf <https://pdfs.semanticscholar.org/beac/3afc6a2cbdefe8dae03de25a139193ef6021.pdf>`_] [`bib <references.bib#L102>`_]
203
+
.. [13] : X.-Y. Liu, J. Wu and Z.-H. Zhou, “Exploratory undersampling for class-imbalance learning,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 39(2), pp. 539-550, 2009.
204
204
205
-
.. [14] : I. Tomek, “An experiment with the edited nearest-neighbor rule,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 6(6), pp. 448-452, 1976. [`bib <references.bib#L158>`_]
205
+
.. [14] : I. Tomek, “An experiment with the edited nearest-neighbor rule,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 6(6), pp. 448-452, 1976.
206
206
207
-
.. [15] : H. He, Y. Bai, E. A. Garcia, S. Li, “ADASYN: Adaptive synthetic sampling approach for imbalanced learning,” In Proceedings of the 5th IEEE International Joint Conference on Neural Networks, pp. 1322-1328, 2008. [`pdf <https://pdfs.semanticscholar.org/4823/4756b7cf798bfeb47328f7c5d597fd4838c2.pdf>`_] [`bib <references.bib#L62>`_]
207
+
.. [15] : H. He, Y. Bai, E. A. Garcia, S. Li, “ADASYN: Adaptive synthetic sampling approach for imbalanced learning,” In Proceedings of the 5th IEEE International Joint Conference on Neural Networks, pp. 1322-1328, 2008.
208
208
209
209
.. [16] : C. Chao, A. Liaw, and L. Breiman. "Using random forest to learn imbalanced data." University of California, Berkeley 110 (2004): 1-12.
0 commit comments