Skip to content

Commit 6ff6e6c

Browse files
committed
DOC add versionadded since 0.3
1 parent d4f456f commit 6ff6e6c

File tree

13 files changed

+40
-11
lines changed

13 files changed

+40
-11
lines changed

doc/whats_new/v0.6.rst

Lines changed: 2 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -11,16 +11,15 @@ Changelog
1111

1212
- Allow column vectors to be passed as targets.
1313
:pr:`673` by :user:`Christos Aridas <chkoar>`.
14-
- Better input/output handling for pandas, numpy and plain lists.
15-
:pr:`681` by :user:`Christos Aridas <chkoar>`.
1614

15+
- Better input/output handling for pandas, numpy and plain lists.
16+
:pr:`681` by :user:`Christos Aridas <chkoar>`.
1717

1818
.. _changes_0_6_1:
1919

2020
Version 0.6.1
2121
==============
2222

23-
2423
This is a bug-fix release to primarily resolve some packaging issues in version
2524
0.6.0. It also includes minor documentation improvements and some bug fixes.
2625

imblearn/base.py

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -162,6 +162,8 @@ class FunctionSampler(BaseSampler):
162162
validation allows to use the ``FunctionSampler`` with any type of
163163
data.
164164
165+
.. versionadded:: 0.6
166+
165167
See Also
166168
--------
167169

imblearn/datasets/_zenodo.py

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -112,6 +112,8 @@ def fetch_datasets(
112112
):
113113
"""Load the benchmark datasets from Zenodo, downloading it if necessary.
114114
115+
.. versionadded:: 0.3
116+
115117
Parameters
116118
----------
117119
data_home : str, default=None

imblearn/ensemble/_easy_ensemble.py

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -37,6 +37,8 @@ class EasyEnsembleClassifier(BaggingClassifier):
3737
3838
Read more in the :ref:`User Guide <boosting>`.
3939
40+
.. versionadded:: 0.4
41+
4042
Parameters
4143
----------
4244
n_estimators : int, default=10

imblearn/ensemble/_forest.py

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -86,6 +86,8 @@ class BalancedRandomForestClassifier(RandomForestClassifier):
8686
8787
Read more in the :ref:`User Guide <forest>`.
8888
89+
.. versionadded:: 0.4
90+
8991
Parameters
9092
----------
9193
n_estimators : int, default=100

imblearn/ensemble/_weight_boosting.py

Lines changed: 4 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -27,6 +27,8 @@ class RUSBoostClassifier(AdaBoostClassifier):
2727
2828
Read more in the :ref:`User Guide <boosting>`.
2929
30+
.. versionadded:: 0.4
31+
3032
Parameters
3133
----------
3234
base_estimator : estimator object, default=None
@@ -176,7 +178,8 @@ def _validate_estimator(self):
176178
super()._validate_estimator()
177179

178180
self.base_sampler_ = RandomUnderSampler(
179-
sampling_strategy=self.sampling_strategy, replacement=self.replacement,
181+
sampling_strategy=self.sampling_strategy,
182+
replacement=self.replacement,
180183
)
181184

182185
def _make_sampler_estimator(self, append=True, random_state=None):

imblearn/keras/_generator.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -62,6 +62,8 @@ class BalancedBatchGenerator(*ParentClass):
6262
creating the batch. The sampler should have an attribute
6363
``sample_indices_``.
6464
65+
.. versionadded:: 0.4
66+
6567
Parameters
6668
----------
6769
X : ndarray of shape (n_samples, n_features)
@@ -163,9 +165,7 @@ def _sample(self):
163165
self.sampler_ = clone(self.sampler)
164166
self.sampler_.fit_resample(self.X, self.y)
165167
if not hasattr(self.sampler_, "sample_indices_"):
166-
raise ValueError(
167-
"'sampler' needs to have an attribute 'sample_indices_'."
168-
)
168+
raise ValueError("'sampler' needs to have an attribute 'sample_indices_'.")
169169
self.indices_ = self.sampler_.sample_indices_
170170
# shuffle the indices since the sampler are packing them by class
171171
random_state.shuffle(self.indices_)

imblearn/metrics/_classification.py

Lines changed: 4 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -831,13 +831,13 @@ def classification_report_imbalanced(
831831
output_dict : bool, default=False
832832
If True, return output as dict.
833833
834-
.. versionadded:: 0.7
834+
.. versionadded:: 0.8
835835
836836
zero_division : "warn" or {0, 1}, default="warn"
837837
Sets the value to return when there is a zero division. If set to
838838
"warn", this acts as 0, but warnings are also raised.
839839
840-
.. versionadded:: 0.7
840+
.. versionadded:: 0.8
841841
842842
Returns
843843
-------
@@ -999,6 +999,8 @@ def macro_averaged_mean_absolute_error(y_true, y_pred, *, sample_weight=None):
999999
10001000
Read more in the :ref:`User Guide <macro_averaged_mean_absolute_error>`.
10011001
1002+
.. versionadded:: 0.8
1003+
10021004
Parameters
10031005
----------
10041006
y_true : array-like of shape (n_samples,) or (n_samples, n_outputs)

imblearn/metrics/pairwise.py

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -40,6 +40,8 @@ class ValueDifferenceMetric(BaseEstimator):
4040
4141
Read more in the :ref:`User Guide <vdm>`.
4242
43+
.. versionadded:: 0.8
44+
4345
Parameters
4446
----------
4547
n_categories : "auto" or array-like of shape (n_features,), default="auto"

imblearn/over_sampling/_random_over_sampler.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -53,7 +53,7 @@ class RandomOverSampler(BaseOverSampler):
5353
The value needs of the shrinkage parameter needs to be higher or equal
5454
to 0.
5555
56-
.. versionadded:: 0.7
56+
.. versionadded:: 0.8
5757
5858
Attributes
5959
----------
@@ -66,7 +66,7 @@ class RandomOverSampler(BaseOverSampler):
6666
The per-class shrinkage factor used to generate the smoothed bootstrap
6767
sample. When `shrinkage=None` a normal bootstrap will be generated.
6868
69-
.. versionadded:: 0.7
69+
.. versionadded:: 0.8
7070
7171
See Also
7272
--------

0 commit comments

Comments
 (0)