Skip to content

Commit 9b666a0

Browse files
committed
MNT fix sections marker in install doc
1 parent b1148db commit 9b666a0

File tree

2 files changed

+19
-7
lines changed

2 files changed

+19
-7
lines changed

README.rst

Lines changed: 17 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -65,7 +65,10 @@ pandas(>=0.22).
6565
Installation
6666
~~~~~~~~~~~~
6767

68-
imbalanced-learn is currently available on the PyPi's repository and you can
68+
From PyPi or conda-forge repositories
69+
.....................................
70+
71+
imbalanced-learn is currently available on the PyPi's repositories and you can
6972
install it via `pip`::
7073

7174
pip install -U imbalanced-learn
@@ -74,16 +77,25 @@ The package is release also in Anaconda Cloud platform::
7477

7578
conda install -c conda-forge imbalanced-learn
7679

80+
From source available on GitHub
81+
...............................
82+
7783
If you prefer, you can clone it and run the setup.py file. Use the following
78-
commands to get a copy from GitHub and install all dependencies::
84+
commands to get a copy from Github and install all dependencies::
7985

8086
git clone https://github.com/scikit-learn-contrib/imbalanced-learn.git
8187
cd imbalanced-learn
8288
pip install .
8389

84-
Or install using pip and GitHub::
90+
Be aware that you can install in developer mode with::
91+
92+
pip install --no-build-isolation --editable .
93+
94+
If you wish to make pull-requests on GitHub, we advise you to install
95+
pre-commit::
8596

86-
pip install -U git+https://github.com/scikit-learn-contrib/imbalanced-learn.git
97+
pip install pre-commit
98+
pre-commit install
8799

88100
Testing
89101
~~~~~~~
@@ -213,4 +225,4 @@ References:
213225
214226
.. [18] : Seiffert, C., Khoshgoftaar, T. M., Van Hulse, J., & Napolitano, A. "RUSBoost: A hybrid approach to alleviating class imbalance." IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans 40.1 (2010): 185-197.
215227
216-
.. [19] : Menardi, G., Torelli, N.: "Training and assessing classification rules with unbalanced data", Data Mining and Knowledge Discovery, 28, (2014): 92–122
228+
.. [19] : Menardi, G., Torelli, N.: "Training and assessing classification rules with unbalanced data", Data Mining and Knowledge Discovery, 28, (2014): 92–122

doc/install.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -18,7 +18,7 @@ Install
1818
=======
1919

2020
From PyPi or conda-forge repositories
21-
.....................................
21+
-------------------------------------
2222

2323
imbalanced-learn is currently available on the PyPi's repositories and you can
2424
install it via `pip`::
@@ -30,7 +30,7 @@ The package is release also in Anaconda Cloud platform::
3030
conda install -c conda-forge imbalanced-learn
3131

3232
From source available on GitHub
33-
...............................
33+
-------------------------------
3434

3535
If you prefer, you can clone it and run the setup.py file. Use the following
3636
commands to get a copy from Github and install all dependencies::

0 commit comments

Comments
 (0)