@@ -19,7 +19,7 @@ Bagging classifier
1919In ensemble classifiers, bagging methods build several estimators on different
2020randomly selected subset of data. In scikit-learn, this classifier is named
2121:class: `~sklearn.ensemble.BaggingClassifier `. However, this classifier does not
22- allow to balance each subset of data. Therefore, when training on imbalanced
22+ allow each subset of data to be balanced . Therefore, when training on an imbalanced
2323data set, this classifier will favor the majority classes::
2424
2525 >>> from sklearn.datasets import make_classification
@@ -59,10 +59,10 @@ sampling is controlled by the parameter `sampler` or the two parameters
5959 >>> balanced_accuracy_score(y_test, y_pred)
6060 0.8...
6161
62- Changing the `sampler ` will give rise to different known implementation
62+ Changing the `sampler ` will give rise to different known implementations
6363:cite: `maclin1997empirical `, :cite: `hido2009roughly `,
64- :cite: `wang2009diversity `. You can refer to the following example shows in
65- practice these different methods:
64+ :cite: `wang2009diversity `. You can refer to the following example which shows these
65+ different methods in practice :
6666:ref: `sphx_glr_auto_examples_ensemble_plot_bagging_classifier.py `
6767
6868.. _forest :
@@ -93,7 +93,7 @@ Boosting
9393
9494Several methods taking advantage of boosting have been designed.
9595
96- :class: `RUSBoostClassifier ` randomly under-sample the dataset before to perform
96+ :class: `RUSBoostClassifier ` randomly under-samples the dataset before performing
9797a boosting iteration :cite: `seiffert2009rusboost `::
9898
9999 >>> from imblearn.ensemble import RUSBoostClassifier
@@ -107,7 +107,7 @@ a boosting iteration :cite:`seiffert2009rusboost`::
107107
108108A specific method which uses :class: `~sklearn.ensemble.AdaBoostClassifier ` as
109109learners in the bagging classifier is called "EasyEnsemble". The
110- :class: `EasyEnsembleClassifier ` allows to bag AdaBoost learners which are
110+ :class: `EasyEnsembleClassifier ` allows bagging AdaBoost learners which are
111111trained on balanced bootstrap samples :cite: `liu2008exploratory `. Similarly to
112112the :class: `BalancedBaggingClassifier ` API, one can construct the ensemble as::
113113
0 commit comments