@@ -110,17 +110,20 @@ class CondensedNearestNeighbour(BaseCleaningSampler):
110
110
Examples
111
111
--------
112
112
>>> from collections import Counter # doctest: +SKIP
113
- >>> from sklearn.datasets import fetch_mldata # doctest: +SKIP
113
+ >>> from sklearn.datasets import fetch_openml # doctest: +SKIP
114
+ >>> from sklearn.preprocessing import scale # doctest: +SKIP
114
115
>>> from imblearn.under_sampling import \
115
116
CondensedNearestNeighbour # doctest: +SKIP
116
- >>> pima = fetch_mldata('diabetes_scale' ) # doctest: +SKIP
117
- >>> X, y = pima['data'], pima['target'] # doctest: +SKIP
117
+ >>> X, y = fetch_openml('diabetes', version=1, return_X_y=True ) # doctest: +SKIP
118
+ >>> X = scale(X) # doctest: +SKIP
118
119
>>> print('Original dataset shape %s' % Counter(y)) # doctest: +SKIP
119
- Original dataset shape Counter({{1: 500, -1: 268}}) # doctest: +SKIP
120
+ Original dataset shape Counter({{'tested_negative': 500, \
121
+ 'tested_positive': 268}}) # doctest: +SKIP
120
122
>>> cnn = CondensedNearestNeighbour(random_state=42) # doctest: +SKIP
121
123
>>> X_res, y_res = cnn.fit_resample(X, y) #doctest: +SKIP
122
124
>>> print('Resampled dataset shape %s' % Counter(y_res)) # doctest: +SKIP
123
- Resampled dataset shape Counter({{-1: 268, 1: 227}}) # doctest: +SKIP
125
+ Resampled dataset shape Counter({{'tested_positive': 268, \
126
+ 'tested_negative': 181}}) # doctest: +SKIP
124
127
"""
125
128
126
129
_parameter_constraints : dict = {
0 commit comments