Skip to content

Commit dcb476d

Browse files
authored
DOC udpate the datasets used in CondensedNearestNeighbour docstring (#1041)
1 parent 0553fbe commit dcb476d

File tree

1 file changed

+8
-5
lines changed

1 file changed

+8
-5
lines changed

imblearn/under_sampling/_prototype_selection/_condensed_nearest_neighbour.py

Lines changed: 8 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -110,17 +110,20 @@ class CondensedNearestNeighbour(BaseCleaningSampler):
110110
Examples
111111
--------
112112
>>> from collections import Counter # doctest: +SKIP
113-
>>> from sklearn.datasets import fetch_mldata # doctest: +SKIP
113+
>>> from sklearn.datasets import fetch_openml # doctest: +SKIP
114+
>>> from sklearn.preprocessing import scale # doctest: +SKIP
114115
>>> from imblearn.under_sampling import \
115116
CondensedNearestNeighbour # doctest: +SKIP
116-
>>> pima = fetch_mldata('diabetes_scale') # doctest: +SKIP
117-
>>> X, y = pima['data'], pima['target'] # doctest: +SKIP
117+
>>> X, y = fetch_openml('diabetes', version=1, return_X_y=True) # doctest: +SKIP
118+
>>> X = scale(X) # doctest: +SKIP
118119
>>> print('Original dataset shape %s' % Counter(y)) # doctest: +SKIP
119-
Original dataset shape Counter({{1: 500, -1: 268}}) # doctest: +SKIP
120+
Original dataset shape Counter({{'tested_negative': 500, \
121+
'tested_positive': 268}}) # doctest: +SKIP
120122
>>> cnn = CondensedNearestNeighbour(random_state=42) # doctest: +SKIP
121123
>>> X_res, y_res = cnn.fit_resample(X, y) #doctest: +SKIP
122124
>>> print('Resampled dataset shape %s' % Counter(y_res)) # doctest: +SKIP
123-
Resampled dataset shape Counter({{-1: 268, 1: 227}}) # doctest: +SKIP
125+
Resampled dataset shape Counter({{'tested_positive': 268, \
126+
'tested_negative': 181}}) # doctest: +SKIP
124127
"""
125128

126129
_parameter_constraints: dict = {

0 commit comments

Comments
 (0)