|
| 1 | +# Benchmark polynomial classifiers on bag-of-words text classification |
| 2 | +# Inspired from: https://github.com/scikit-learn/scikit-learn/blob/master |
| 3 | +# /benchmarks/bench_20newsgroups.py |
| 4 | + |
| 5 | +from time import time |
| 6 | + |
| 7 | +import numpy as np |
| 8 | +import scipy.sparse as sp |
| 9 | + |
| 10 | +from sklearn.base import clone |
| 11 | +from sklearn.metrics import accuracy_score, f1_score |
| 12 | +from sklearn.datasets import fetch_20newsgroups_vectorized |
| 13 | + |
| 14 | +from polylearn import (FactorizationMachineClassifier, |
| 15 | + PolynomialNetworkClassifier) |
| 16 | + |
| 17 | + |
| 18 | +estimators = { |
| 19 | + 'fm-2': FactorizationMachineClassifier(n_components=30, |
| 20 | + fit_linear=False, |
| 21 | + fit_lower=None, |
| 22 | + degree=2, |
| 23 | + random_state=0, |
| 24 | + max_iter=10), |
| 25 | + |
| 26 | + 'polynet-2': PolynomialNetworkClassifier(n_components=15, degree=2, |
| 27 | + fit_lower=None, |
| 28 | + max_iter=10, |
| 29 | + random_state=0) |
| 30 | +} |
| 31 | + |
| 32 | +estimators['fm-3'] = clone(estimators['fm-2']).set_params(degree=3) |
| 33 | +estimators['polynet-3'] = (clone(estimators['polynet-2']) |
| 34 | + .set_params(degree=3, n_components=10)) |
| 35 | + |
| 36 | +if __name__ == '__main__': |
| 37 | + data_train = fetch_20newsgroups_vectorized(subset="train") |
| 38 | + data_test = fetch_20newsgroups_vectorized(subset="test") |
| 39 | + X_train = sp.csc_matrix(data_train.data) |
| 40 | + X_test = sp.csc_matrix(data_test.data) |
| 41 | + |
| 42 | + y_train = data_train.target == 0 # atheism vs rest |
| 43 | + y_test = data_test.target == 0 |
| 44 | + |
| 45 | + print("20 newsgroups") |
| 46 | + print("=============") |
| 47 | + print("X_train.shape = {0}".format(X_train.shape)) |
| 48 | + print("X_train.format = {0}".format(X_train.format)) |
| 49 | + print("X_train.dtype = {0}".format(X_train.dtype)) |
| 50 | + print("X_train density = {0}" |
| 51 | + "".format(X_train.nnz / np.product(X_train.shape))) |
| 52 | + print("y_train {0}".format(y_train.shape)) |
| 53 | + print("X_test {0}".format(X_test.shape)) |
| 54 | + print("X_test.format = {0}".format(X_test.format)) |
| 55 | + print("X_test.dtype = {0}".format(X_test.dtype)) |
| 56 | + print("y_test {0}".format(y_test.shape)) |
| 57 | + print() |
| 58 | + |
| 59 | + print("Classifier Training") |
| 60 | + print("===================") |
| 61 | + f1, accuracy, train_time, test_time = {}, {}, {}, {} |
| 62 | + |
| 63 | + for name, clf in sorted(estimators.items()): |
| 64 | + print("Training %s ... " % name, end="") |
| 65 | + t0 = time() |
| 66 | + clf.fit(X_train, y_train) |
| 67 | + train_time[name] = time() - t0 |
| 68 | + t0 = time() |
| 69 | + y_pred = clf.predict(X_test) |
| 70 | + test_time[name] = time() - t0 |
| 71 | + accuracy[name] = accuracy_score(y_test, y_pred) |
| 72 | + f1[name] = f1_score(y_test, y_pred) |
| 73 | + print("done") |
| 74 | + |
| 75 | + print("Classification performance:") |
| 76 | + print("===========================") |
| 77 | + print() |
| 78 | + print("%s %s %s %s %s" % ("Classifier".ljust(16), |
| 79 | + "train".rjust(10), |
| 80 | + "test".rjust(10), |
| 81 | + "f1".rjust(10), |
| 82 | + "accuracy".rjust(10))) |
| 83 | + print("-" * (16 + 4 * 11)) |
| 84 | + for name in sorted(f1, key=f1.get): |
| 85 | + print("%s %s %s %s %s" % ( |
| 86 | + name.ljust(16), |
| 87 | + ("%.4fs" % train_time[name]).rjust(10), |
| 88 | + ("%.4fs" % test_time[name]).rjust(10), |
| 89 | + ("%.4f" % f1[name]).rjust(10), |
| 90 | + ("%.4f" % accuracy[name]).rjust(10))) |
| 91 | + |
| 92 | + print() |
0 commit comments