|
| 1 | +Focus on EM sampler |
| 2 | +=================== |
| 3 | + |
| 4 | +This method allows the imputation of missing values in multivariate data using a multivariate Gaussian model |
| 5 | +via EM algorithm. |
| 6 | + |
| 7 | +Basics of Gaussians |
| 8 | +****************** |
| 9 | + |
| 10 | +We assume the data :math:`\mathbf{X} \in \mathbb{R}^{n \times p}` follows a |
| 11 | +multivariate Gaussian distribution :math:`\mathcal{N}(\mathbf{m}, \mathbf{\Sigma})`. |
| 12 | +Hence, the density of :math:`\mathbf{x}` is given by |
| 13 | + |
| 14 | +.. math:: |
| 15 | +
|
| 16 | + p(\mathbf{x}) = \frac{1}{\sqrt{\det (2 \pi \mathbf{\Sigma})}} \exp \left[-\frac{1}{2} (\mathbf{x} - \mathbf{m})^\top \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{m}) \right] |
| 17 | +
|
| 18 | +We define :math:`\Omega := \{ (i,j) \, | \, X_{ij} \text{ is observed} \}`, |
| 19 | +and :math:`\Omega_i := \{ j \, | \, X_{ij} \text{ is observed} \}`. |
| 20 | +The complementary of these sets are :math:`\Omega^c := \{ (i,j) \, | \, X_{ij} \text{ is missing} \}` |
| 21 | +and :math:`\Omega_i^c := \{ j \, | \, X_{ij} \text{ is missing} \}`. |
| 22 | + |
| 23 | + |
| 24 | +Each row :math:`i` of the matrix represents a time, :math:`1 \leq i \leq n`, |
| 25 | +and each column :math:`j` represents a variable, :math:`1 \leq j \leq m`. |
| 26 | + |
| 27 | +Let :math:`\mathbf{x}_i \in \mathbb{R}^p` be an observation, i.e. :math:`\mathbf{x}_i \overset{iid}{\sim} \mathcal{N}_{\mathbf{x}_i}(\mu, \mathbf{\Sigma})`. |
| 28 | +We can rearrange the entries of :math:`\mathbf{x}_i` such that we can write |
| 29 | + |
| 30 | +.. math:: |
| 31 | +
|
| 32 | + \mathbf{x}_i = |
| 33 | + \begin{bmatrix} |
| 34 | + \mathbf{x}_{i, \Omega} \\ |
| 35 | + \mathbf{x}_{i, \Omega^c} |
| 36 | + \end{bmatrix} |
| 37 | + \sim |
| 38 | + \mathcal{N}_{\mathbf{x}_i} |
| 39 | + \left( |
| 40 | + \begin{bmatrix} |
| 41 | + \mathbf{\mu}_{\Omega_i} \\ |
| 42 | + \mathbf{\mu}_{\Omega^c_i} |
| 43 | + \end{bmatrix}, |
| 44 | + \begin{bmatrix} |
| 45 | + \mathbf{\Sigma}_{\Omega_i \Omega_i} & \mathbf{\Sigma}_{\Omega_i \Omega^c_i} \\ |
| 46 | + \mathbf{\Sigma}_{\Omega^c_i \Omega_i} & \mathbf{\Sigma}_{\Omega^c_i \Omega^c_i} |
| 47 | + \end{bmatrix} |
| 48 | + \right) |
| 49 | +
|
| 50 | +Thus formulated, the conditional distributions can be expressed as |
| 51 | + |
| 52 | +.. math:: |
| 53 | +
|
| 54 | + \begin{array}{l} |
| 55 | + p(\mathbf{x}_{i, \Omega^c_i} | \mathbf{x}_{i, \Omega}) |
| 56 | + = \mathcal{N}_{\mathbf{x}_i}(\tilde{\mu_i}, \tilde{\mathbf{\Sigma}_{i,\Omega_i^c}}) \\ |
| 57 | + \text{where } \tilde{\mu}_i = |
| 58 | + \mu_{\Omega^c_i} + \mathbf{\Sigma}_{\Omega^c_i \Omega_i} \mathbf{\Sigma}^{-1}_{\Omega_i \Omega_i} (\mathbf{x}_{i, \Omega_i} - \mathbf{\mu}_{\Omega_i}) \\ |
| 59 | + \phantom{\text{ where }} \tilde{\mathbf{\Sigma}}_{i,\Omega_i^c} = |
| 60 | + \mathbf{\Sigma}_{\Omega^c_i \Omega^c_i} - \mathbf{\Sigma}_{\Omega^c_i \Omega_i} \mathbf{\Sigma}^{-1}_{\Omega_i \Omega_i} \mathbf{\Sigma}_{\Omega_i \Omega^c_i} |
| 61 | + \end{array} |
| 62 | +
|
| 63 | +Note, that the covariance matrices are the Schur complement of the block matrix. |
| 64 | + |
| 65 | + |
| 66 | +Recall also the mean of square forms, i.e. |
| 67 | + |
| 68 | +.. math:: |
| 69 | + E \left[ (\mathbf{x} - \mathbf{m}')^\top \mathbf{A} (\mathbf{x} - \mathbf{m}') \right] = (\mathbf{m} - \mathbf{m}')^\top \mathbf{A} (\mathbf{m} - \mathbf{m}') + \text{Tr}(\mathbf{A}\mathbf{\Sigma}), |
| 70 | +
|
| 71 | +for all square matrices :math:`\mathbf{A}`. |
| 72 | + |
| 73 | +EM algorithm |
| 74 | +************ |
| 75 | + |
| 76 | +The EM algorithm is an optimisation algorithm that maximises the "expected complete data log likelihood" by some iterative |
| 77 | +means under the (conditional) distribution of unobserved components. |
| 78 | +In this way it is possible to calculate the statistics of interest. |
| 79 | + |
| 80 | +How it works |
| 81 | +------------ |
| 82 | + |
| 83 | +We start with a first estimation :math:`\mathbf{\hat{X}}` of :math:`\mathbf{X}`, obtained via a simple |
| 84 | +imputation method, i.e. linear interpolation. |
| 85 | + |
| 86 | +the expectation step (or E-step) at iteration *t* computes: |
| 87 | + |
| 88 | +.. math:: |
| 89 | +
|
| 90 | + \begin{array}{ll} |
| 91 | + \mathcal{Q}(\theta \, | \, \theta^{(t)}) &:= &E \left[ \log L(\theta ; \mathbf{X}) \, | \, \mathbf{X}_{\Omega}, \theta^{(t)} \right] \\ |
| 92 | + & = & \sum_{i=1}^n E \left[ \log L(\theta ; \mathbf{x}_i) \, | \, \mathbf{x}_{i, \Omega_i}, \theta^{(t)} \right]. |
| 93 | + \end{array} |
| 94 | +
|
| 95 | +The maximization step (or M-step) at iteration *t* finds: |
| 96 | + |
| 97 | +.. math:: |
| 98 | +
|
| 99 | + \theta^{(t+1)} := \underset{\theta}{\mathrm{argmax}} \left\{ \mathcal{Q} \left( \theta \, | \, \theta^{(t)} \right) \right\}. |
| 100 | +
|
| 101 | +These two steps are repeated until the parameter estimate converges. |
| 102 | + |
| 103 | + |
| 104 | +Computation |
| 105 | +----------- |
| 106 | + |
| 107 | +At iteration :math:`\textit{t}` with :math:`\theta^{(t)} = (\mu^{(t)}, \mathbf{\Sigma}^{(t)})`, let's |
| 108 | +:math:`\mathbf{x}_i \sim \mathcal{N}_p(\mu, \Sigma)`. The expected log likelihhod is equal to |
| 109 | + |
| 110 | +.. math:: |
| 111 | +
|
| 112 | + \begin{array}{ll} |
| 113 | + \mathcal{Q}_i(\theta \, | \, \theta^{(t)}) |
| 114 | + &=& E \left[ - \frac{1}{2} \log \det \mathbf{\Sigma} - \frac{1}{2} (\mathbf{x}_i - \mu)^\top \mathbf{\Sigma}^{-1} (\mathbf{x}_i - \mu) \, | \, \mathbf{x}_{i, \Omega_i}, \theta^{(t)} \right] \\ |
| 115 | + &=& - \frac{1}{2} \log \det \mathbf{\Sigma} - \frac{1}{2} \Big( |
| 116 | + (\mathbf{x}_{i,\Omega_i} - \mu_{\Omega_i})^\top \mathbf{\Sigma}_{\Omega_i\Omega_i}^{-1} (\mathbf{x}_{i,\Omega_i} - \mu_{\Omega_i}) |
| 117 | + \\ |
| 118 | + && \phantom{- \frac{1}{2}} + |
| 119 | + 2 (\mathbf{x}_{i,\Omega_i} - \mu_{\Omega_i})^\top \mathbf{\Sigma}_{\Omega_i\Omega^c_i}^{-1} E \left[ \mathbf{x}_{i,\Omega^c_i} - \mu_{\Omega^c_i} \, | \, \mathbf{x}_{i, \Omega_i}, \theta^{(t)} \right] |
| 120 | + \\ |
| 121 | + && \phantom{- \frac{1}{2}} + |
| 122 | + E \left[ (\mathbf{x}_{i,\Omega^c_i} - \mu_{\Omega^c_i})^\top \mathbf{\Sigma}_{\Omega^c_i\Omega^c_i}^{-1} (\mathbf{x}_{i,\Omega^c_i} - \mu_{\Omega^c_i}) \, | \, \mathbf{x}_{i, \Omega_i}, \theta^{(t)} \right] |
| 123 | + \Big) \\ |
| 124 | + &=& - \frac{1}{2} \log \det \mathbf{\Sigma} |
| 125 | + - \frac{1}{2} \Big( |
| 126 | + (\mathbf{x}_{i,\Omega_i} - \mu_{\Omega_i})^\top \mathbf{\Sigma}_{\Omega_i\Omega_i}^{-1} (\mathbf{x}_{i,\Omega_i} - \mu_{\Omega_i}) |
| 127 | + \\ |
| 128 | + && \phantom{- \frac{1}{2}} + |
| 129 | + 2 (\mathbf{x}_{i,\Omega_i} - \mu_{\Omega_i})^\top \mathbf{\Sigma}_{\Omega_i\Omega^c_i}^{-1} (\tilde{\mu}_{i}^{(t)} - \mu_{\Omega^c_i}) |
| 130 | + \\ |
| 131 | + && \phantom{- \frac{1}{2}} + |
| 132 | + (\tilde{\mu}_{i}^{(t)} - \mu_{\Omega^c_i})^\top \mathbf{\Sigma}^{-1}_{\Omega_i^c\Omega_i^c} (\tilde{\mu}_{i}^{(t)} - \mu_{\Omega^c_i}) |
| 133 | + \\ |
| 134 | + && \phantom{- \frac{1}{2}} + |
| 135 | + \text{Tr} \left( \mathbf{\Sigma}^{-1}_{\Omega_i^c\Omega_i^c} \tilde{\mathbf{\Sigma}}_{i,\Omega_i^c}^{(t)} \right) |
| 136 | + \Big) \\ |
| 137 | + &=& - \frac{1}{2} \log \det \mathbf{\Sigma} |
| 138 | + - \frac{1}{2} \left[ |
| 139 | + (\hat{\mathbf{x}}_{i}^{(t)} - \mu)^\top \mathbf{\Sigma}^{-1} (\hat{\mathbf{x}}_{i}^{(t)} - \mu) |
| 140 | + + \text{Tr} \left( \mathbf{\Sigma}^{-1}_{\Omega_i^c\Omega_i^c} \tilde{\mathbf{\Sigma}}_{i,\Omega_i^c}^{(t)} \right) |
| 141 | + \right] |
| 142 | + \end{array} |
| 143 | +
|
| 144 | +where :math:`\hat{\mathbf{x}}_{i}^{(t)} = [\hat{x}_{i1}^{(t)}, ..., \hat{x}_{ip}^{(t)}]` |
| 145 | +is the data point such that :math:`\mathbf{x}_{i\Omega_i^c}^{(t)}` is replaced by :math:`\tilde{\mu}_{i}^{(t)}`. |
| 146 | + |
| 147 | +And finally, one has |
| 148 | + |
| 149 | +.. math:: |
| 150 | +
|
| 151 | + \mathcal{Q}(\theta \, | \, \theta^{(t)}) = \sum_{i=1}^n \mathcal{Q}_i(\theta \, | \, \theta^{(t)}) |
| 152 | +
|
| 153 | +
|
| 154 | +For the M-step, one has to find :math:`\theta` that maximises the previous expression. Since it is concave, it suffices |
| 155 | +to zeroing the derivatives. |
| 156 | +For the mean, one has |
| 157 | + |
| 158 | +.. math:: |
| 159 | +
|
| 160 | + \begin{array}{l} |
| 161 | + \nabla_{\mu} \mathcal{Q}(\theta \, | \, \theta^{(t)}) |
| 162 | + &= -\frac{1}{2} \sum_{i=1}^n \nabla_{\mu} (\hat{\mathbf{x}}_{i}^{(t)} - \mu)^\top \mathbf{\Sigma}^{-1} (\hat{\mathbf{x}}_{i}^{(t)} - \mu) \\ |
| 163 | + &= \mathbf{\Sigma}^{-1} \sum_{i=1}^n (\hat{\mathbf{x}}_{i}^{(t)} - \mu) \\ |
| 164 | + &= 0. |
| 165 | + \end{array} |
| 166 | +
|
| 167 | +Therefore |
| 168 | + |
| 169 | +.. math:: |
| 170 | +
|
| 171 | + \mu^{(t+1)} = \frac{1}{n} \sum_{i=1}^n \hat{\mathbf{x}}_{i}^{(t)}. |
| 172 | +
|
| 173 | +For the variance, one has |
| 174 | + |
| 175 | +.. math:: |
| 176 | +
|
| 177 | + \begin{array}{ll} |
| 178 | + \nabla_{\Sigma^{-1}} \mathcal{Q}(\theta \, | \, \theta^{(t)}) |
| 179 | + &=& \frac{1}{2} \sum_{i=1}^n \nabla_{\Sigma^{-1}} \log \det \Sigma^{-1} |
| 180 | + \\ |
| 181 | + && \phantom{\frac{1}{2}} |
| 182 | + - \nabla_{\Sigma^{-1}} \text{Tr} \left( \mathbf{\Sigma}^{-1}_{\Omega_i^c\Omega_i^c} \tilde{\mathbf{\Sigma}}_i^{(t)} \right) |
| 183 | + \\ |
| 184 | + && \phantom{\frac{1}{2}} |
| 185 | + - \frac{1}{2} \sum_{i=1}^n \nabla_{\Sigma^{-1}} (\hat{\mathbf{x}}_{i}^{(t)} - \mu)^\top \mathbf{\Sigma}^{-1} (\hat{\mathbf{x}}_{i}^{(t)} - \mu) \\ |
| 186 | + &=& \frac{1}{2} \left[n \mathbf{\Sigma} - \sum_{i=1}^n \tilde{\mathbf{\Sigma}}_i^{(t)} \right] |
| 187 | + - \frac{1}{2} \sum_{i=1}^n (\hat{\mathbf{x}}_{i}^{(t)} - \mu) (\hat{\mathbf{x}}_{i}^{(t)} - \mu)^\top \\ |
| 188 | + &=& 0 |
| 189 | + \end{array} |
| 190 | +
|
| 191 | +where :math:`\tilde{\mathbf{\Sigma}}_i^{(t)}` is the :math:`p \times p` matrix having zero everywhere |
| 192 | +expect the :math:`\Omega_i^c\Omega_i^c` block replaced by :math:`\tilde{\mathbf{\Sigma}}_{i,\Omega_i^c}^{(t)}`. |
| 193 | + |
| 194 | +Therefore |
| 195 | + |
| 196 | +.. math:: |
| 197 | +
|
| 198 | + \mathbf{\Sigma}^{(t+1)} = \frac{1}{n} \sum_{i=1}^n \left[ (\hat{\mathbf{x}}_{i}^{(t)} - \mu) (\hat{\mathbf{x}}_{i}^{(t)} - \mu)^\top + \tilde{\mathbf{\Sigma}}_i^{(t)} \right]. |
| 199 | +
|
| 200 | +We can test the convergence of the algorithm by checking some sort of metric between |
| 201 | +two consecutive estimates of the means or the covariances |
| 202 | +(it is assumed to converge since the sequences are Cauchy). |
| 203 | + |
| 204 | +Thus, at each iteration, the missing values are replaced either by their corresponding mean or by smapling from |
| 205 | +a multivarite normal distribution with fitted mean and variance. |
| 206 | +The resulting imputed data is the final imputed array, obtained at convergence. |
| 207 | + |
| 208 | + |
| 209 | + |
| 210 | +Multivariate time series |
| 211 | +************************ |
| 212 | + |
| 213 | +To explicitely take into account the temporal aspect of the data |
| 214 | +(temporal correlations), we construct an extended matrix :math:`\mathbf{X}^{ext}` |
| 215 | +by considering the shifted columns, i.e. |
| 216 | +:math:`\mathbf{X}^{ext} := [\mathbf{X}, \mathbf{X}^{s+1}, \mathbf{X}^{s-1}]` where |
| 217 | +:math:`\mathbf{X}^{s+1}` (resp. :math:`\mathbf{X}^{s-1}`) is the :math:`\mathbf{X}` matrix |
| 218 | +where all columns are shifted +1 for one step backward in time (resp. -1 for one step forward in time). |
| 219 | +The covariance matrix :math:`\mathbf{\Sigma}^{ext}` is therefore richer in information since the presence of additional |
| 220 | +(temporal) correlations. |
| 221 | + |
| 222 | +.. image:: images/extended_matrix.png |
| 223 | + |
| 224 | + |
| 225 | + |
| 226 | + |
| 227 | +References |
| 228 | +********** |
| 229 | +[1] Borman, Sean. "The expectation maximization algorithm-a short tutorial." Submitted for publication 41 (2004). |
| 230 | +(`pdf <https://www.lri.fr/~sebag/COURS/EM_algorithm.pdf>`__) |
| 231 | + |
| 232 | +[2] https://joon3216.github.io/research_materials.html |
0 commit comments