@@ -311,7 +311,7 @@ from qolmat.imputations.imputers_pytorch import ImputerDiffusion
311311from qolmat.imputations.diffusions.ddpms import TabDDPM
312312
313313X = np.array([[1 , 1 , 1 , 1 ], [np.nan, np.nan, 3 , 2 ], [1 , 2 , 2 , 1 ], [2 , 2 , 2 , 2 ]])
314- imputer = ImputerDiffusion(model = TabDDPM( random_state = 11 ), epochs = 50 , batch_size = 1 )
314+ imputer = ImputerDiffusion(epochs = 50 , batch_size = 1 , random_state = 11 )
315315
316316imputer.fit_transform(X)
317317```
@@ -322,7 +322,7 @@ from qolmat.imputations.imputers_pytorch import ImputerDiffusion
322322from qolmat.imputations.diffusions.ddpms import TabDDPM
323323
324324X = np.array([[1 , 1 , 1 , 1 ], [np.nan, np.nan, 3 , 2 ], [1 , 2 , 2 , 1 ], [2 , 2 , 2 , 2 ]])
325- imputer = ImputerDiffusion(model = TabDDPM( random_state = 11 ), epochs = 50 , batch_size = 1 )
325+ imputer = ImputerDiffusion(epochs = 50 , batch_size = 1 , random_state = 11 )
326326
327327imputer.fit_transform(X)
328328```
@@ -358,7 +358,7 @@ encoder, decoder = imputers_pytorch.build_autoencoder(input_dim=n_variables,lat
358358``` python
359359dict_imputers[" MLP" ] = imputer_mlp = imputers_pytorch.ImputerRegressorPyTorch(estimator = estimator, groups = (' station' ,), epochs = 500 )
360360dict_imputers[" Autoencoder" ] = imputer_autoencoder = imputers_pytorch.ImputerAutoencoder(encoder, decoder, max_iterations = 100 , epochs = 100 )
361- dict_imputers[" Diffusion" ] = imputer_diffusion = imputers_pytorch.ImputerDiffusion(model = TabDDPM( num_sampling = 5 ), epochs = 100 , batch_size = 100 )
361+ dict_imputers[" Diffusion" ] = imputer_diffusion = imputers_pytorch.ImputerDiffusion(epochs = 100 , batch_size = 100 , num_sampling = 5 )
362362```
363363
364364We can re-run the imputation model benchmark as before.
0 commit comments