Skip to content

Commit 25ee6b4

Browse files
Julien RousselJulien Roussel
authored andcommitted
print removed
1 parent 9785fc2 commit 25ee6b4

File tree

5 files changed

+0
-17
lines changed

5 files changed

+0
-17
lines changed

qolmat/benchmark/metrics.py

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -863,7 +863,6 @@ def kl_divergence_gaussian_exact(
863863
norm_M = (M**2).sum().sum()
864864
norm_y = (y**2).sum()
865865
term_diag_L = 2 * np.sum(np.log(np.diagonal(L2) / np.diagonal(L1)))
866-
print(norm_M, "-", n_variables, "+", norm_y, "+", term_diag_L)
867866
div_kl = 0.5 * (norm_M - n_variables + norm_y + term_diag_L)
868867
return div_kl
869868

qolmat/imputations/em_sampler.py

Lines changed: 0 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -268,26 +268,16 @@ def _sample_ou(
268268
self.reset_learned_parameters()
269269
X_init = X.copy()
270270
gamma = self.get_gamma()
271-
print("gamma:")
272-
print(gamma)
273271
sqrt_gamma = np.real(spl.sqrtm(gamma))
274272
for i in range(self.n_iter_ou):
275-
print(f"Iteration #{i}")
276273
noise = self.ampli * self.rng.normal(0, 1, size=(n_variables, n_samples))
277274
grad_X = self.gradient_X_loglik(X_copy)
278-
print("grad")
279-
print(self.dt * grad_X @ gamma)
280-
print("noise")
281-
print(np.sqrt(2 * self.dt) * noise @ sqrt_gamma)
282275
X_copy += self.dt * grad_X @ gamma + np.sqrt(2 * self.dt) * noise @ sqrt_gamma
283276
X_copy[~mask_na] = X_init[~mask_na]
284277
if estimate_params:
285278
self.update_parameters(X_copy)
286-
print("X_copy")
287-
print(X_copy)
288279
if np.sum(np.abs(X_copy)) > 1e9:
289280
raise AssertionError
290-
print()
291281

292282
return X_copy
293283

@@ -501,8 +491,6 @@ def get_gamma(self) -> NDArray:
501491
NDArray
502492
Gamma matrix
503493
"""
504-
print("get_gamma")
505-
print(self.cov)
506494
# gamma = np.diag(np.diagonal(self.cov))
507495
gamma = self.cov
508496
# gamma = np.eye(len(self.cov))

tests/imputations/test_imputers.py

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -174,7 +174,6 @@ def test_ImputerShuffle_fit_transform1(df: pd.DataFrame) -> None:
174174
def test_ImputerShuffle_fit_transform2(df: pd.DataFrame) -> None:
175175
imputer = imputers.ImputerShuffle(random_state=42)
176176
result = imputer.fit_transform(df)
177-
print(result)
178177
expected = pd.DataFrame({"col1": [0, 3, 2, 3, 0], "col2": [-1, 1.5, 0.5, 1.5, 1.5]})
179178
np.testing.assert_allclose(result, expected)
180179

tests/imputations/test_imputers_pytorch.py

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -54,7 +54,6 @@ def test_ImputerRegressorPyTorch_fit_transform(df: pd.DataFrame) -> None:
5454
"col5": [93, 75, 2.132, 12, 2.345],
5555
}
5656
)
57-
print(result["col5"])
5857
np.testing.assert_allclose(result, expected, atol=1e-3)
5958

6059

tests/utils/test_data.py

Lines changed: 0 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -186,11 +186,9 @@ def test_utils_data_get_data(name_data: str, df: pd.DataFrame, mocker: MockerFix
186186
assert df_result.columns.tolist() == expected_columns
187187
elif name_data == "Monach_weather":
188188
assert mock_download.call_count == 1
189-
print(df_result)
190189
pd.testing.assert_frame_equal(df_result, df_monach_weather_preprocess)
191190
elif name_data == "Monach_electricity_australia":
192191
assert mock_download.call_count == 1
193-
print(df_result)
194192
pd.testing.assert_frame_equal(df_result, df_monach_elec_preprocess)
195193
else:
196194
assert False

0 commit comments

Comments
 (0)