We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
There was an error while loading. Please reload this page.
1 parent 13a76ec commit 4e345d2Copy full SHA for 4e345d2
examples/tutorials/plot_tuto_categorical.py
@@ -22,6 +22,8 @@
22
# We get the data and focus on the explanatory variables
23
df = data.get_data("Titanic")
24
df = df.drop(columns=["Survived"])
25
+print("Dataset shape:", df.shape)
26
+df.head()
27
28
# %%
29
# 2. Mixed type imputation methods
@@ -61,7 +63,7 @@
61
63
imputer_hgb = ImputerRegressor(estimator=pipestimator, handler_nan="none")
62
64
imputer_wrap_hgb = preprocessing.WrapperTransformer(imputer_hgb, bt)
65
-# %%
66
+# %%
67
# 3. Mixed type model selection
68
# ---------------------------------------------------------------
69
# Let us now compare these three aproaches by measuring their ability to impute uniformly
0 commit comments