@@ -73,15 +73,15 @@ cols_to_impute = ["TEMP", "PRES"]
7373
7474The dataset ` Artificial ` is designed to have a sum of a periodical signal, a white noise and some outliers.
7575
76- ``` python tags=[]
77- df_data
78- ```
79-
8076``` python
8177# df_data = data.get_data_corrupted("Artificial", ratio_masked=.2, mean_size=10)
8278# cols_to_impute = ["signal"]
8379```
8480
81+ ``` python tags=[]
82+ df_data
83+ ```
84+
8585Let's take a look at variables to impute. We only consider a station, Aotizhongxin.
8686Time series display seasonalities (roughly 12 months).
8787
@@ -164,7 +164,7 @@ dict_imputers = {
164164}
165165n_imputers = len (dict_imputers)
166166
167- search_params = {
167+ dict_config_opti = {
168168 " RPCA_opti" : {
169169 " tau" : {" min" : .5 , " max" : 5 , " type" :" Real" },
170170 " lam" : {" min" : .1 , " max" : 1 , " type" :" Real" },
@@ -195,7 +195,7 @@ comparison = comparator.Comparator(
195195 generator_holes = generator_holes,
196196 metrics = [" mae" , " wmape" , " KL_columnwise" , " ks_test" , " energy" ],
197197 n_calls_opt = 10 ,
198- search_params = search_params ,
198+ dict_config_opti = dict_config_opti ,
199199)
200200results = comparison.compare(df_data)
201201results
@@ -343,7 +343,7 @@ comparison = comparator.Comparator(
343343 df_data.columns,
344344 generator_holes = generator_holes,
345345 n_calls_opt = 10 ,
346- search_params = search_params ,
346+ dict_config_opti = dict_config_opti ,
347347)
348348results = comparison.compare(df_data)
349349results
0 commit comments