Skip to content

Commit b97d0bc

Browse files
author
Gsaes
committed
Modification Lundi 5 juin
1 parent cdfb415 commit b97d0bc

File tree

1 file changed

+16
-16
lines changed

1 file changed

+16
-16
lines changed

examples/benchmark.md

Lines changed: 16 additions & 16 deletions
Original file line numberDiff line numberDiff line change
@@ -8,9 +8,9 @@ jupyter:
88
format_version: '1.3'
99
jupytext_version: 1.14.4
1010
kernelspec:
11-
display_name: env_qolmat
11+
display_name: env_qolmat_dev
1212
language: python
13-
name: env_qolmat
13+
name: env_qolmat_dev
1414
---
1515

1616
**This notebook aims to present the Qolmat repo through an example of a multivariate time series.
@@ -73,15 +73,15 @@ cols_to_impute = ["TEMP", "PRES"]
7373

7474
The dataset `Artificial` is designed to have a sum of a periodical signal, a white noise and some outliers.
7575

76-
```python tags=[]
77-
df_data
78-
```
79-
8076
```python
8177
# df_data = data.get_data_corrupted("Artificial", ratio_masked=.2, mean_size=10)
8278
# cols_to_impute = ["signal"]
8379
```
8480

81+
```python tags=[]
82+
df_data
83+
```
84+
8585
Let's take a look at variables to impute. We only consider a station, Aotizhongxin.
8686
Time series display seasonalities (roughly 12 months).
8787

@@ -131,8 +131,8 @@ imputer_spline = imputers.ImputerInterpolation(groups=["station"], method="splin
131131
imputer_shuffle = imputers.ImputerShuffle(groups=["station"])
132132
imputer_residuals = imputers.ImputerResiduals(groups=["station"], period=7, model_tsa="additive", extrapolate_trend="freq", method_interpolation="linear")
133133

134-
imputer_rpca = imputers.ImputerRPCA(groups=["station"], columnwise=True, period=365, max_iter=200, tau=2, lam=.3)
135-
imputer_rpca_opti = imputers.ImputerRPCA(groups=["station"], columnwise=True, period=365, max_iter=100)
134+
imputer_rpca = imputers.ImputerRPCA(groups=["station"], columnwise=True, period=7, max_iter=200, tau=2, lam=.3)
135+
imputer_rpca_opti = imputers.ImputerRPCA(groups=["station"], columnwise=True, period=7, max_iter=100)
136136

137137
imputer_ou = imputers.ImputerEM(groups=["station"], model="multinormal", method="sample", max_iter_em=34, n_iter_ou=15, dt=1e-3)
138138
imputer_tsou = imputers.ImputerEM(groups=["station"], model="VAR1", method="sample", max_iter_em=34, n_iter_ou=15, dt=1e-3)
@@ -154,8 +154,8 @@ dict_imputers = {
154154
# "OU": imputer_ou,
155155
# "TSOU": imputer_tsou,
156156
# "TSMLE": imputer_tsmle,
157-
# "RPCA": imputer_rpca,
158-
# "RPCA_opti": imputer_rpca_opti,
157+
"RPCA": imputer_rpca,
158+
"RPCA_opti": imputer_rpca_opti,
159159
# "locf": imputer_locf,
160160
# "nocb": imputer_nocb,
161161
# "knn": imputer_knn,
@@ -164,7 +164,7 @@ dict_imputers = {
164164
}
165165
n_imputers = len(dict_imputers)
166166

167-
search_params = {
167+
dict_config_opti = {
168168
"RPCA_opti": {
169169
"tau": {"min": .5, "max": 5, "type":"Real"},
170170
"lam": {"min": .1, "max": 1, "type":"Real"},
@@ -195,15 +195,15 @@ comparison = comparator.Comparator(
195195
generator_holes = generator_holes,
196196
metrics=["mae", "wmape", "KL_columnwise", "ks_test", "energy"],
197197
n_calls_opt=10,
198-
search_params=search_params,
198+
dict_config_opti=dict_config_opti,
199199
)
200200
results = comparison.compare(df_data)
201201
results
202202
```
203203

204204
```python
205205
df_plot = results.loc["energy", "All"]
206-
plt.bar(df_plot.index, df_plot, color=tab10(0))
206+
plt.barh(df_plot.index, df_plot, color=tab10(0))
207207
plt.show()
208208
```
209209

@@ -335,15 +335,15 @@ dict_imputers["MLP"] = imputer_mlp = imputers_keras.ImputerRegressorKeras(estima
335335

336336
We can re-run the imputation model benchmark as before.
337337

338-
```python tags=[] jupyter={"outputs_hidden": true}
338+
```python tags=[]
339339
generator_holes = missing_patterns.EmpiricalHoleGenerator(n_splits=2, subset = cols_to_impute, ratio_masked=ratio_masked)
340340

341341
comparison = comparator.Comparator(
342342
dict_imputers,
343343
df_data.columns,
344344
generator_holes = generator_holes,
345345
n_calls_opt=10,
346-
search_params=search_params,
346+
dict_config_opti=dict_config_opti,
347347
)
348348
results = comparison.compare(df_data)
349349
results
@@ -356,7 +356,7 @@ plt.ylabel("mae")
356356
plt.show()
357357
```
358358

359-
```python jupyter={"outputs_hidden": true}
359+
```python
360360
df_plot = df_data
361361
dfs_imputed = {name: imp.fit_transform(df_plot) for name, imp in dict_imputers.items()}
362362
station = df_plot.index.get_level_values("station")[0]

0 commit comments

Comments
 (0)