@@ -184,15 +184,6 @@ def benchmark_radius_clustering():
184
184
fig .suptitle ("Benchmark of Radius Clustering Solvers" , fontsize = 16 )
185
185
186
186
axs ['time' ].set_yscale ('log' ) # Use logarithmic scale for better visibility
187
- #for algo, algo_results in results.items():
188
- # Plot execution time
189
- # axs['time'].plot(
190
- # DATASETS.keys(),
191
- # algo_results["time"],
192
- # marker='o',
193
- # label=algo,
194
- # )
195
- # Plot number of clusters
196
187
197
188
algorithms = list (results .keys ())
198
189
dataset_names = list (DATASETS .keys ())
@@ -205,7 +196,6 @@ def benchmark_radius_clustering():
205
196
# Calculate position for each bar in the group to center them
206
197
position = x_indices - (n_algos * bar_width / 2 ) + (i * bar_width ) + bar_width / 2
207
198
axs ['time' ].bar (position , times , bar_width , label = algo )
208
- # --- End of change ---
209
199
210
200
for i , (name , (dataset , _ )) in enumerate (DATASETS .items ()):
211
201
axs [name ].bar (
@@ -227,7 +217,7 @@ def benchmark_radius_clustering():
227
217
axs ['time' ].set_title ("Execution Time (log scale)" )
228
218
axs ['time' ].set_xlabel ("Datasets" )
229
219
axs ['time' ].set_ylabel ("Time (seconds)" )
230
- axs ['time' ].set_xticks (x_indices ) # Set tick positions to be at the center of the groups
220
+ axs ['time' ].set_xticks (x_indices )
231
221
axs ['time' ].set_xticklabels (dataset_names )
232
222
axs ['time' ].legend (title = "Algorithms" )
233
223
plt .tight_layout ()
0 commit comments