Skip to content

Commit 011984c

Browse files
committed
update licenses, tests
1 parent cd9c7e0 commit 011984c

File tree

13 files changed

+72
-34
lines changed

13 files changed

+72
-34
lines changed

doc/installation.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@ PyPI
88

99
Install scikit-dimension from PyPI_ using::
1010

11-
pip install scikit-dimension #will come with first release
11+
pip install scikit-dimension
1212

1313
Development Version
1414
^^^^^^^^^^^^^^^^^^^

doc/release_notes.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -4,6 +4,6 @@
44
Release Notes
55
=============
66

7-
Version 0.1.1 :small:`December 2020`
7+
Version 0.2 :small:`December 2020`
88
-----------------------------------
9-
First alpha release of skdim.
9+
First release of skdim.

setup.py

Lines changed: 2 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -47,21 +47,19 @@
4747
MAINTAINER = "Jonathan Bac"
4848
MAINTAINER_EMAIL = "[email protected]"
4949
URL = "https://github.com/j-bac/scikit-dimension"
50-
LICENSE = "new BSD"
50+
LICENSE = "BSD-3-clause"
5151
DOWNLOAD_URL = "https://github.com/j-bac/scikit-dimension"
5252
VERSION = __version__
5353
INSTALL_REQUIRES = ["numpy", "scipy", "scikit-learn"]
5454
CLASSIFIERS = [
5555
"Intended Audience :: Science/Research",
56-
"Intended Audience :: Developers",
5756
"License :: OSI Approved",
5857
"Programming Language :: Python",
59-
"Topic :: Software Development",
6058
"Topic :: Scientific/Engineering",
6159
"Operating System :: Microsoft :: Windows",
62-
"Operating System :: POSIX",
6360
"Operating System :: Unix",
6461
"Operating System :: MacOS",
62+
"Programming Language :: Python :: 3.6",
6563
"Programming Language :: Python :: 3.7",
6664
"Programming Language :: Python :: 3.8",
6765
]

skdim/_commonfuncs.py

Lines changed: 26 additions & 26 deletions
Original file line numberDiff line numberDiff line change
@@ -563,32 +563,32 @@ def fit_predict_pw(
563563
return self.dimension_pw_
564564

565565

566-
def mean_local_id(local_id, knnidx):
567-
"""
568-
Compute the mean ID of all neighborhoods in which a point appears
569-
570-
Parameters
571-
----------
572-
local_id : list or np.array
573-
list of local ID for each point
574-
knnidx : np.array
575-
indices of kNN for each point returned by function get_nn
576-
577-
Results
578-
-------
579-
dimension_pw_smooth_ : np.array
580-
list of mean local ID for each point
581-
582-
"""
583-
dimension_pw_smooth_ = np.zeros(len(local_id))
584-
for point_i in range(len(local_id)):
585-
# get all points which have this point in their neighbourhoods
586-
all_neighborhoods_with_point_i = np.append(
587-
np.where(knnidx == point_i)[0], point_i
588-
)
589-
# get the mean local ID of these points
590-
dimension_pw_smooth_[point_i] = local_id[all_neighborhoods_with_point_i].mean()
591-
return dimension_pw_smooth_
566+
# def mean_local_id(local_id, knnidx):
567+
# """
568+
# Compute the mean ID of all neighborhoods in which a point appears
569+
#
570+
# Parameters
571+
# ----------
572+
# local_id : list or np.array
573+
# list of local ID for each point
574+
# knnidx : np.array
575+
# indices of kNN for each point returned by function get_nn
576+
#
577+
# Results
578+
# -------
579+
# dimension_pw_smooth_ : np.array
580+
# list of mean local ID for each point
581+
#
582+
# """
583+
# dimension_pw_smooth_ = np.zeros(len(local_id))
584+
# for point_i in range(len(local_id)):
585+
# # get all points which have this point in their neighbourhoods
586+
# all_neighborhoods_with_point_i = np.append(
587+
# np.where(knnidx == point_i)[0], point_i
588+
# )
589+
# # get the mean local ID of these points
590+
# dimension_pw_smooth_[point_i] = local_id[all_neighborhoods_with_point_i].mean()
591+
# return dimension_pw_smooth_
592592

593593

594594
def binom_coeff(n, k):

skdim/_version.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -29,4 +29,4 @@
2929
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
3030
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
3131
#
32-
__version__ = "0.1.1"
32+
__version__ = "0.2"

skdim/id/_DANCo.py

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -50,6 +50,7 @@
5050

5151

5252
class DANCo(GlobalEstimator):
53+
# SPDX-License-Identifier: MIT, 2017 Kerstin Johnsson [IDJohnsson]_
5354
"""Intrinsic dimension estimation using the Dimensionality from Angle and Norm Concentration algorithm. [Ceruti2012]_ [IDLombardi]_ [IDJohnsson]_
5455
5556
Parameters

skdim/id/_ESS.py

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -46,6 +46,7 @@
4646

4747

4848
class ESS(LocalEstimator):
49+
# SPDX-License-Identifier: MIT, 2017 Kerstin Johnsson [IDJohnsson]_
4950
"""Intrinsic dimension estimation using the Expected Simplex Skewness algorithm. [Johnsson2015]_ [IDJohnsson]_
5051
The ESS method assumes that the data is local, i.e. that it is a neighborhood taken from a larger data set, such that the curvature and the noise within the neighborhood is relatively small. In the ideal case (no noise, no curvature) this is equivalent to the data being uniformly distributed over a hyper ball.
5152

skdim/id/_KNN.py

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -36,6 +36,7 @@
3636

3737

3838
class KNN(GlobalEstimator):
39+
# SPDX-License-Identifier: MIT, 2017 Kerstin Johnsson [IDJohnsson]_
3940
"""Intrinsic dimension estimation using the kNN algorithm. [Carter2010]_ [IDJohnsson]_
4041
4142
This is a simplified version of the kNN dimension estimation method described by Carter et al. (2010),

skdim/id/_MLE.py

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -38,6 +38,7 @@
3838

3939

4040
class MLE(LocalEstimator):
41+
# SPDX-License-Identifier: MIT, 2017 Kerstin Johnsson [IDJohnsson]_
4142
"""Intrinsic dimension estimation using the Maximum Likelihood algorithm. [Haro2008]_ [Hill1975]_ [Levina2005]_ [IDJohnsson]_
4243
4344
The estimators are based on the referenced paper by Haro et al. (2008), using the assumption that there is a single manifold.

skdim/id/_MiND_ML.py

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -37,6 +37,7 @@
3737

3838

3939
class MiND_ML(GlobalEstimator):
40+
# SPDX-License-Identifier: MIT, 2017 Kerstin Johnsson [IDJohnsson]_
4041
"""Intrinsic dimension estimation using the MiND_MLk and MiND_MLi algorithms. [Rozza2012]_ [IDJohnsson]_
4142
4243
Parameters

0 commit comments

Comments
 (0)