You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Generates a sample from a uniform distribution on a line, an oblong disk and an oblong ball
128
128
Translated from ldbl function in Hideitsu Hino's package
129
129
130
-
Parameters
130
+
Parameters
131
131
----------
132
132
n: int
133
133
Number of data points.
@@ -247,21 +247,12 @@ def dl(r):
247
247
248
248
classBenchmarkManifolds:
249
249
"""
250
-
Generates a commonly used benchmark set of synthetic manifolds with known intrinsic dimension described by Hein et al. and Campadelli et al.
250
+
Generates a commonly used benchmark set of synthetic manifolds with known intrinsic dimension described by Hein et al. and Campadelli et al. [Campadelli2015]_
251
251
252
-
Attributes
252
+
Parameters
253
253
----------
254
254
noise_type : str, 'uniform' or 'gaussian'
255
255
Type of noise to generate
256
-
257
-
References
258
-
----------
259
-
260
-
Campadelli et al., Intrinsic Dimension Estimation: Relevant Techniques and
261
-
a Benchmark Framework, https://doi.org/10.1155/2015/759567
262
-
263
-
M. Hein and J.-Y. Audibert, IntrinsicDity estimation of submanifolds in Euclidean space,
264
-
Proceedings of the 22nd Internatical Conference on Machine Learning (ICML), 289--296. (Eds.) L. de Raedt and S. Wrobel (2005).
265
256
"""
266
257
267
258
# class modified and adapted from https://github.com/stat-ml/GeoMLE
0 commit comments