Skip to content

Commit 7504cf0

Browse files
committed
docs
1 parent a40b6db commit 7504cf0

File tree

2 files changed

+8
-14
lines changed

2 files changed

+8
-14
lines changed

doc/references.rst

Lines changed: 5 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -6,12 +6,15 @@ Articles
66
.. [Albergante2019] Albergante, L., *et al.* (2019),
77
*Estimating the effective dimension of large biological datasets using Fisher separability analysis.*,
88
`2019 International Joint Conference on Neural Networks, IEEE`.
9-
.. [Amsaleg2018] Amsaleg, L., *et al.* (2018)
9+
.. [Amsaleg2018] Amsaleg, L., *et al.* (2018),
1010
*Extreme-value-theoretic estimation of local intrinsic dimensionality.*
1111
`DAMI, 32(6):1768–1805.`
12-
.. [Amsaleg2019], Amsaleg, L., *et al.* (2019)
12+
.. [Amsaleg2019], Amsaleg, L., *et al.* (2019),
1313
*Intrinsic dimensionality estimation within tight localities.*,
1414
`Proceedings of the SIAM International Conference on Data Mining (SDM), pages 181–189, Calgary, Alberta, Canada`
15+
.. [Campadelli2015] Campadelli *et al.* (2015),
16+
*Intrinsic Dimension Estimation: Relevant Techniques and a Benchmark Framework.*
17+
`Mathematical Problems in Engineering`.
1518
.. [Cangelosi2007] Cangelosi, R., and Goriely, A. (2007),
1619
*Component retention in principal component analysis with application to cDNA microarray data.*,
1720
`Biol. Direct 2:2.`

skdim/datasets.py

Lines changed: 3 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -127,7 +127,7 @@ def lineDiskBall(n, random_state=None):
127127
Generates a sample from a uniform distribution on a line, an oblong disk and an oblong ball
128128
Translated from ldbl function in Hideitsu Hino's package
129129
130-
Parameters
130+
Parameters
131131
----------
132132
n: int
133133
Number of data points.
@@ -247,21 +247,12 @@ def dl(r):
247247

248248
class BenchmarkManifolds:
249249
"""
250-
Generates a commonly used benchmark set of synthetic manifolds with known intrinsic dimension described by Hein et al. and Campadelli et al.
250+
Generates a commonly used benchmark set of synthetic manifolds with known intrinsic dimension described by Hein et al. and Campadelli et al. [Campadelli2015]_
251251
252-
Attributes
252+
Parameters
253253
----------
254254
noise_type : str, 'uniform' or 'gaussian'
255255
Type of noise to generate
256-
257-
References
258-
----------
259-
260-
Campadelli et al., Intrinsic Dimension Estimation: Relevant Techniques and
261-
a Benchmark Framework, https://doi.org/10.1155/2015/759567
262-
263-
M. Hein and J.-Y. Audibert, IntrinsicDity estimation of submanifolds in Euclidean space,
264-
Proceedings of the 22nd Internatical Conference on Machine Learning (ICML), 289--296. (Eds.) L. de Raedt and S. Wrobel (2005).
265256
"""
266257

267258
# class modified and adapted from https://github.com/stat-ml/GeoMLE

0 commit comments

Comments
 (0)