Skip to content

Commit 174d645

Browse files
authored
Merge branch 'main' into main
2 parents d4fd14b + 627f97b commit 174d645

24 files changed

+89
-168
lines changed

.circleci/config.yml

Lines changed: 0 additions & 22 deletions
This file was deleted.

.coveragerc

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -18,4 +18,4 @@ exclude_lines =
1818
if 0:
1919
if __name__ == .__main__.:
2020
if self.verbose:
21-
show_missing = True
21+
show_missing = True

.github/workflows/build-wheels.yml

Lines changed: 13 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -1,14 +1,14 @@
11
name: build_wheels
22

3-
on: # [push, pull_request]
4-
release:
5-
types:
6-
- created
7-
workflow_dispatch:
8-
inputs:
9-
version:
10-
description: 'Manually trigger wheel build in Github UI'
11-
required: true
3+
on: #[push, pull_request]
4+
release:
5+
types:
6+
- created
7+
workflow_dispatch:
8+
inputs:
9+
version:
10+
description: 'Manually trigger wheel build in Github UI'
11+
required: true
1212

1313

1414
jobs:
@@ -17,7 +17,7 @@ jobs:
1717
runs-on: ${{ matrix.os }}
1818
strategy:
1919
matrix:
20-
os: [ubuntu-18.04, windows-latest, macos-latest]
20+
os: [ubuntu-22.04, windows-latest, macos-latest]
2121

2222
steps:
2323
- uses: actions/checkout@v2
@@ -28,12 +28,13 @@ jobs:
2828
python-version: '3.8'
2929
- name: Install cibuildwheel
3030
run: |
31-
python -m pip install cibuildwheel==1.10.0
31+
python -m pip install cibuildwheel==2.12.1
3232
- name: Build wheels
3333
env:
3434
# We only build for Python 3.6+. On Linux manylinux2010 is used.
3535
# Skipping pypy wheels for now since scipy & scikit-learn haven't build them yet.
36-
CIBW_SKIP: "pp* *p27* *p35*"
36+
# Skip python3.11 for 32bit.
37+
CIBW_SKIP: "pp* *-win32 *-manylinux_i686 *musllinux*"
3738
CIBW_TEST_REQUIRES: "pytest pandas scikit-learn"
3839
CIBW_TEST_COMMAND: "pytest --pyargs sklearn_extra"
3940
run: |

.pre-commit-config.yaml

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1,16 +1,16 @@
11
repos:
22
- repo: https://github.com/pre-commit/pre-commit-hooks
3-
rev: v3.4.0
3+
rev: v4.4.0
44
hooks:
55
- id: check-yaml
66
- id: end-of-file-fixer
77
- id: trailing-whitespace
88
- repo: https://github.com/psf/black
9-
rev: 20.8b1
9+
rev: 23.1.0
1010
hooks:
1111
- id: black
12-
- repo: https://gitlab.com/pycqa/flake8
13-
rev: 3.9.0
12+
- repo: https://github.com/pycqa/flake8
13+
rev: 6.0.0
1414
hooks:
1515
- id: flake8
1616
types: [file, python]

azure-pipelines.yml

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -66,9 +66,9 @@ jobs:
6666
env:
6767
CODECOV_TOKEN: $(CODECOV_TOKEN)
6868

69-
- job: 'macOS1014'
69+
- job: 'macOS'
7070
pool:
71-
vmImage: 'macOS-10.14'
71+
vmImage: 'macOS-latest'
7272
strategy:
7373
matrix:
7474
Python37:
@@ -122,9 +122,9 @@ jobs:
122122
CODECOV_TOKEN: $(CODECOV_TOKEN)
123123

124124

125-
- job: 'win2016'
125+
- job: 'win'
126126
pool:
127-
vmImage: 'vs2017-win2016'
127+
vmImage: 'windows-latest'
128128
strategy:
129129
matrix:
130130
Python38:

conftest.py

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,6 @@
77

88

99
def pytest_collection_modifyitems(config, items):
10-
1110
# numpy changed the str/repr formatting of numpy arrays in 1.14. We want to
1211
# run doctests only for numpy >= 1.14.
1312
skip_doctests = False

doc/changelog.rst

Lines changed: 4 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,17 +1,19 @@
11
Changelog
22
=========
33

4-
Unreleased
4+
Version 0.3.0
55
----------
66

7+
- Fix bug with random initialization of KMedoids [`#129 <https://github.com/scikit-learn-contrib/scikit-learn-extra/pull/129>`_].
8+
- `KMedoids` supports array-like init method [`#137 <https://github.com/scikit-learn-contrib/scikit-learn-extra/pull/137>`_].
79
- Add a stopping criterion and parameter tuning heuristic for Huber robust mean
810
estimator.
911
- Add `CLARA` (Clustering for Large Applications) which extends k-medoids to
1012
be more scalable using a sampling approach.
1113
[`#83 <https://github.com/scikit-learn-contrib/scikit-learn-extra/pull/83>`_].
1214
- Fix `_estimator_type` for :class:`~sklearn_extra.robust` estimators. Fix
1315
misbehavior of scikit-learn's :class:`~sklearn.model_selection.cross_val_score` and
14-
:class:`~sklearn.grid_search.GridSearchCV` for :class:`~sklearn_extra.robust.RobustWeightedClassifier`
16+
:class:`~sklearn.grid_search.GridSearchCV` for :class:`~sklearn_extra.robust.RobustWeightedClassifier`.
1517

1618
Version 0.2.0
1719
-------------

doc/docs.md

Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -5,6 +5,5 @@
55
- scikit-learn(>=0.21)
66
- Cython (>0.28)
77
### User Installation:
8-
You can install scikit-learn-extra using this command:
8+
You can install scikit-learn-extra using this command:
99
`pip install https://github.com/scikit-learn-contrib/scikit-learn-extra/archive/master.zip`
10-

doc/index.rst

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -28,4 +28,3 @@ scikit-learn-extra is a Python module for machine learning that extends scikit-l
2828

2929
contributing
3030
changelog
31-

doc/modules/kernel_approximation.rst

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -6,29 +6,29 @@ Kernel map approximation for faster kernel methods
66

77
.. currentmodule:: sklearn_extra.kernel_approximation
88

9-
Kernel methods, which are among the most flexible and influential tools in
10-
machine learning with applications in virtually all areas of the field, rely
9+
Kernel methods, which are among the most flexible and influential tools in
10+
machine learning with applications in virtually all areas of the field, rely
1111
on high-dimensional feature spaces in order to construct powerfull classifiers or
1212
regressors or clustering algorithms. The main drawback of kernel methods
1313
is their prohibitive computational complexity. Both spatial and temporal complexity
1414
is at least quadratic because we have to compute the whole kernel matrix.
1515

1616
One of the popular way to improve the computational scalability of kernel methods is
1717
to approximate the feature map impicit behind the kernel method. In practice,
18-
this means that we will compute a low dimensional approximation of the
18+
this means that we will compute a low dimensional approximation of the
1919
the otherwise high-dimensional embedding used to define the kernel method.
2020

2121
:class:`Fastfood` approximates feature map of an RBF kernel by Monte Carlo approximation
2222
of its Fourier transform.
2323

24-
Fastfood replaces the random matrix of Random Kitchen Sinks
24+
Fastfood replaces the random matrix of Random Kitchen Sinks
2525
(`RBFSampler <https://scikit-learn.org/stable/modules/generated/sklearn.kernel_approximation.RBFSampler.html#sklearn.kernel_approximation.RBFSampler>`_)
2626
with an approximation that uses the Walsh-Hadamard transformation to gain
2727
significant speed and storage advantages. The computational complexity for
2828
mapping a single example is O(n_components log d). The space complexity is
29-
O(n_components).
29+
O(n_components).
3030

3131
See `scikit-learn User-guide <https://scikit-learn.org/stable/modules/kernel_approximation.html#kernel-approximation>`_ for more general informations on kernel approximations.
3232

33-
See also :class:`EigenProRegressor <sklearn_extra.kernel_methods.EigenProRegressor>` and :class:`EigenProClassifier <sklearn_extra.kernel_methods.EigenProClassifier>` for another
33+
See also :class:`EigenProRegressor <sklearn_extra.kernel_methods.EigenProRegressor>` and :class:`EigenProClassifier <sklearn_extra.kernel_methods.EigenProClassifier>` for another
3434
way to compute fast kernel methods algorithms.

0 commit comments

Comments
 (0)