Skip to content

Commit 61f3231

Browse files
authored
MAINT/DOC Fix sphinx warnings (#104)
1 parent b966037 commit 61f3231

File tree

4 files changed

+7
-9
lines changed

4 files changed

+7
-9
lines changed

doc/modules/cluster.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -4,11 +4,11 @@
44
Clustering with KMedoids and Common-nearest-neighbors
55
=====================================================
66
.. _k_medoids:
7-
.. currentmodule:: sklearn_extra.cluster
87

98
K-Medoids
109
=========
1110

11+
.. currentmodule:: sklearn_extra.cluster
1212

1313
:class:`KMedoids` is related to the :class:`KMeans <sklearn.cluster.KMeans>` algorithm. While
1414
:class:`KMeans <sklearn.cluster.KMeans>` tries to minimize the within cluster sum-of-squares,

doc/modules/kernel_approximation.rst

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,6 @@
33
==================================================
44
Kernel map approximation for faster kernel methods
55
==================================================
6-
.. _kernel_approximation:
76

87
.. currentmodule:: sklearn_extra.kernel_approximation
98

examples/plot_kmedoids.py

Lines changed: 4 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -4,10 +4,9 @@
44
KMedoids Demo
55
=============
66
7-
KMedoids clustering of data points. The goal is to find medoids than minimize the
8-
sum of absolute distance to the closest medoid. A medoid is a point of the dataset.
9-
Read more in the :ref:`User Guide
10-
<_k_medoids>`.
7+
KMedoids clustering of data points. The goal is to find medoids than minimize
8+
the sum of absolute distance to the closest medoid. A medoid is a point of the
9+
dataset. Read more in the :ref:`User Guide <_k_medoids>`.
1110
1211
"""
1312
import matplotlib.pyplot as plt
@@ -31,7 +30,7 @@
3130
cobj = KMedoids(n_clusters=3).fit(X)
3231
labels = cobj.labels_
3332

34-
############################################################"""
33+
##############################################################
3534
# Plot results
3635
unique_labels = set(labels)
3736
colors = [

examples/plot_robust_classification_toy.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,8 +1,8 @@
11
# -*- coding: utf-8 -*-
22
"""
3-
=============================================================
3+
==============================================================
44
A demo of Robust Classification on Simulated corrupted dataset
5-
=============================================================
5+
==============================================================
66
In this example we compare the RobustWeightedClassifier using SGDClassifier
77
for classification with the vanilla SGDClassifier with various losses.
88
"""

0 commit comments

Comments
 (0)