Skip to content

Commit 6f2ad3e

Browse files
committed
Fix Py3 compat
1 parent ba15864 commit 6f2ad3e

File tree

1 file changed

+27
-21
lines changed

1 file changed

+27
-21
lines changed

examples/plot_digits_classification_fastfood.py

Lines changed: 27 additions & 21 deletions
Original file line numberDiff line numberDiff line change
@@ -12,7 +12,7 @@
1212
1313
"""
1414

15-
print __doc__
15+
print(__doc__)
1616

1717
# Author: Gael Varoquaux <gael dot varoquaux at normalesup dot org>
1818
# Modified By: Felix Maximilian Möller
@@ -51,7 +51,8 @@
5151
test__idx = range(n_samples / 2, n_samples)
5252

5353
# map data into featurespace
54-
rbf_transform = Fastfood(sigma=sigma, n_components=number_of_features_to_generate)
54+
rbf_transform = Fastfood(
55+
sigma=sigma, n_components=number_of_features_to_generate)
5556
data_transformed_train = rbf_transform.fit_transform(data[train__idx])
5657
data_transformed_test = rbf_transform.transform(data[test__idx])
5758

@@ -65,30 +66,35 @@
6566
linear_classifier.fit(data[train__idx], digits.target[train__idx])
6667

6768
# Run the linear classifier on the mapped data.
68-
linear_classifier_transformation.fit(data_transformed_train, digits.target[train__idx])
69+
linear_classifier_transformation.fit(
70+
data_transformed_train, digits.target[train__idx])
6971

7072
# Now predict the value of the digit on the second half:
7173
expected = digits.target[test__idx]
7274
predicted = classifier.predict(data[test__idx])
7375
predicted_linear = linear_classifier.predict(data[test__idx])
74-
predicted_linear_transformed = linear_classifier_transformation.predict(data_transformed_test)
75-
76-
print "Classification report for dual classifier %s:\n%s\n" % (
77-
classifier, metrics.classification_report(expected, predicted))
78-
print "Classification report for primal linear classifier %s:\n%s\n" % (
79-
linear_classifier, metrics.classification_report(expected, predicted_linear))
80-
print "Classification report for primal transformation classifier %s:\n%s\n" % (
81-
linear_classifier_transformation, metrics.classification_report(expected, predicted_linear_transformed))
82-
83-
print "Confusion matrix for dual classifier:\n%s" % metrics.confusion_matrix(expected, predicted)
84-
print "Confusion matrix for primal linear classifier:\n%s" % metrics.confusion_matrix(expected, predicted_linear)
85-
print "Confusion matrix for for primal transformation classifier:\n%s" % metrics.confusion_matrix(expected, predicted_linear_transformed)
86-
87-
# assert_almost_equal(metrics.classification_report(expected, predicted),
88-
# metrics.classification_report(expected, predicted_linear_transformed),
89-
# decimal=1)
90-
91-
for index, (image, prediction) in enumerate(zip(digits.images[test__idx], predicted)[:4]):
76+
predicted_linear_transformed = linear_classifier_transformation.predict(
77+
data_transformed_test)
78+
79+
print("Classification report for dual classifier %s:\n%s\n"
80+
% (classifier, metrics.classification_report(expected, predicted)))
81+
print("Classification report for primal linear classifier %s:\n%s\n"
82+
% (linear_classifier,
83+
metrics.classification_report(expected, predicted_linear)))
84+
print(
85+
"Classification report for primal transformation classifier %s:\n%s\n"
86+
% (linear_classifier_transformation,
87+
metrics.classification_report(expected, predicted_linear_transformed)))
88+
89+
print("Confusion matrix for dual classifier:\n%s"
90+
% metrics.confusion_matrix(expected, predicted))
91+
print("Confusion matrix for primal linear classifier:\n%s"
92+
% metrics.confusion_matrix(expected, predicted_linear))
93+
print("Confusion matrix for for primal transformation classifier:\n%s"
94+
% metrics.confusion_matrix(expected, predicted_linear_transformed))
95+
96+
for index, (image, prediction) in enumerate(
97+
zip(digits.images[test__idx], predicted)[:4]):
9298
pl.subplot(2, 4, index + 5)
9399
pl.axis('off')
94100
pl.imshow(image, cmap=pl.cm.gray_r, interpolation='nearest')

0 commit comments

Comments
 (0)