Skip to content

Commit a5355a2

Browse files
authored
Remove unused and commented out code (#63)
1 parent affb82f commit a5355a2

File tree

3 files changed

+1
-40
lines changed

3 files changed

+1
-40
lines changed

examples/plot_kernel_approximation.py

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -80,7 +80,6 @@
8080
data[n_samples // 2 :],
8181
digits.target[n_samples // 2 :],
8282
)
83-
# data_test = scaler.transform(data_test)
8483

8584
# fix model parameters:
8685
GAMMA = 0.2

sklearn_extra/kernel_approximation/test_fastfood.py

Lines changed: 0 additions & 38 deletions
Original file line numberDiff line numberDiff line change
@@ -46,46 +46,8 @@ def test_fastfood():
4646
X_trans = pars.transform(X)
4747
Y_trans = ff_transform.transform(Y)
4848

49-
# print X_trans, Y_trans
5049
kernel_approx = np.dot(X_trans, Y_trans.T)
5150

5251
print("approximation:", kernel_approx[:5, :5])
5352
print("true kernel:", kernel[:5, :5])
5453
assert_array_almost_equal(kernel, kernel_approx, decimal=1)
55-
56-
57-
# def test_fastfood_mem_or_accuracy():
58-
# """compares the performance of Fastfood and RKS"""
59-
# #generate data
60-
# X = rng.random_sample(size=(10000, 4000))
61-
# X /= X.sum(axis=1)[:, np.newaxis]
62-
#
63-
# # calculate feature maps
64-
# gamma = 10.
65-
# sigma = np.sqrt(1 / (2 * gamma))
66-
# number_of_features_to_generate = 1000
67-
#
68-
#
69-
#
70-
# fastfood_start = datetime.datetime.utcnow()
71-
# # Fastfood: approximate kernel mapping
72-
# rbf_transform = Fastfood(
73-
# sigma=sigma, n_components=number_of_features_to_generate,
74-
# tradeoff_less_mem_or_higher_accuracy='accuracy', random_state=42)
75-
# _ = rbf_transform.fit_transform(X)
76-
# fastfood_end = datetime.datetime.utcnow()
77-
# fastfood_spent_time =fastfood_end- fastfood_start
78-
# print "Timimg fastfood accuracy: \t\t", fastfood_spent_time
79-
#
80-
#
81-
# fastfood_mem_start = datetime.datetime.utcnow()
82-
# # Fastfood: approximate kernel mapping
83-
# rbf_transform = Fastfood(
84-
# sigma=sigma, n_components=number_of_features_to_generate,
85-
# tradeoff_less_mem_or_higher_accuracy='mem', random_state=42)
86-
# _ = rbf_transform.fit_transform(X)
87-
# fastfood_mem_end = datetime.datetime.utcnow()
88-
# fastfood_mem_spent_time = fastfood_mem_end- fastfood_mem_start
89-
# print "Timimg fastfood memory: \t\t", fastfood_mem_spent_time
90-
#
91-
# assert_greater(fastfood_spent_time, fastfood_mem_spent_time)

sklearn_extra/kernel_methods/_eigenpro.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -334,7 +334,7 @@ def _raw_fit(self, X, Y):
334334

335335
self.coef_ = np.zeros((n, Y.shape[1]), dtype=np.float32)
336336
step = np.float32(eta / self.bs_)
337-
for epoch in range(0, self.n_epoch):
337+
for _ in range(0, self.n_epoch):
338338
epoch_inds = random_state.choice(
339339
n, n // self.bs_ * self.bs_, replace=False
340340
).astype("int32")

0 commit comments

Comments
 (0)