@@ -46,46 +46,8 @@ def test_fastfood():
46
46
X_trans = pars .transform (X )
47
47
Y_trans = ff_transform .transform (Y )
48
48
49
- # print X_trans, Y_trans
50
49
kernel_approx = np .dot (X_trans , Y_trans .T )
51
50
52
51
print ("approximation:" , kernel_approx [:5 , :5 ])
53
52
print ("true kernel:" , kernel [:5 , :5 ])
54
53
assert_array_almost_equal (kernel , kernel_approx , decimal = 1 )
55
-
56
-
57
- # def test_fastfood_mem_or_accuracy():
58
- # """compares the performance of Fastfood and RKS"""
59
- # #generate data
60
- # X = rng.random_sample(size=(10000, 4000))
61
- # X /= X.sum(axis=1)[:, np.newaxis]
62
- #
63
- # # calculate feature maps
64
- # gamma = 10.
65
- # sigma = np.sqrt(1 / (2 * gamma))
66
- # number_of_features_to_generate = 1000
67
- #
68
- #
69
- #
70
- # fastfood_start = datetime.datetime.utcnow()
71
- # # Fastfood: approximate kernel mapping
72
- # rbf_transform = Fastfood(
73
- # sigma=sigma, n_components=number_of_features_to_generate,
74
- # tradeoff_less_mem_or_higher_accuracy='accuracy', random_state=42)
75
- # _ = rbf_transform.fit_transform(X)
76
- # fastfood_end = datetime.datetime.utcnow()
77
- # fastfood_spent_time =fastfood_end- fastfood_start
78
- # print "Timimg fastfood accuracy: \t\t", fastfood_spent_time
79
- #
80
- #
81
- # fastfood_mem_start = datetime.datetime.utcnow()
82
- # # Fastfood: approximate kernel mapping
83
- # rbf_transform = Fastfood(
84
- # sigma=sigma, n_components=number_of_features_to_generate,
85
- # tradeoff_less_mem_or_higher_accuracy='mem', random_state=42)
86
- # _ = rbf_transform.fit_transform(X)
87
- # fastfood_mem_end = datetime.datetime.utcnow()
88
- # fastfood_mem_spent_time = fastfood_mem_end- fastfood_mem_start
89
- # print "Timimg fastfood memory: \t\t", fastfood_mem_spent_time
90
- #
91
- # assert_greater(fastfood_spent_time, fastfood_mem_spent_time)
0 commit comments