Skip to content

Commit 0e1d581

Browse files
committed
clean up malformatted doc elements
1 parent 94bf7b2 commit 0e1d581

File tree

4 files changed

+30
-8
lines changed

4 files changed

+30
-8
lines changed

docs/src/preprocessing.rst

Lines changed: 23 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,28 @@
11
Preprocessing
22
=============
33

4-
.. automodule:: skmatter.preprocessing
4+
5+
KernelNormalizer
6+
----------------
7+
8+
.. autoclass:: skmatter.preprocessing.KernelNormalizer
9+
:members:
10+
:undoc-members:
11+
:inherited-members:
12+
13+
14+
SparseKernelCenterer
15+
--------------------
16+
17+
.. autoclass:: skmatter.preprocessing.SparseKernelCenterer
18+
:members:
19+
:undoc-members:
20+
:inherited-members:
21+
22+
StandardFlexibleScaler
23+
----------------------
24+
25+
.. autoclass:: skmatter.preprocessing.StandardFlexibleScaler
526
:members:
627
:undoc-members:
7-
:show-inheritance:
28+
:inherited-members:

docs/src/utils.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -33,4 +33,4 @@ for feature and sample selection.
3333
Random Partitioning with Overlaps
3434
#################################
3535

36-
.. automodule:: skmatter.model_selection._split
36+
.. autofunction:: skmatter.model_selection.train_test_split

src/skmatter/preprocessing/_data.py

Lines changed: 5 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -232,10 +232,11 @@ class KernelNormalizer(KernelCenterer):
232232
"""Kernel centering method, similar to KernelCenterer,
233233
but with additional scaling and ability to pass a set of sample weights.
234234
235-
Let K(x, z) be a kernel defined by phi(x)^T phi(z), where phi is a
236-
function mapping x to a Hilbert space. KernelNormalizer centers (i.e.,
237-
normalize to have zero mean) the data without explicitly computing phi(x).
238-
It is equivalent to centering and scaling phi(x) with
235+
Let :math:`K(x, z)` be a kernel defined by :math:`\\phi(x)^T \\phi(z)`,
236+
where :math:`\\phi` is a function mapping x to a Hilbert space.
237+
KernelNormalizer centers (i.e., normalize to have zero mean) the data without
238+
explicitly computing :math:`\\phi(x)`.
239+
It is equivalent to centering and scaling :math:`\\phi(x)` with
239240
sklearn.preprocessing.StandardScaler(with_std=False).
240241
241242
Parameters

src/skmatter/utils/_orthogonalizers.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -100,7 +100,7 @@ def Y_feature_orthogonalizer(y, X, tol=1e-12, copy=True):
100100

101101
def Y_sample_orthogonalizer(y, X, y_ref, X_ref, tol=1e-12, copy=True):
102102
"""
103-
Orthogonalizes a matrix of targets :math:`{\\mathbf{Y}}`given a reference feature
103+
Orthogonalizes a matrix of targets :math:`{\\mathbf{Y}}` given a reference feature
104104
matrix :math:`{\\mathbf{X}_r}` and reference target matrix :math:`{\\mathbf{Y}_r}`:
105105
106106
.. math::

0 commit comments

Comments
 (0)