@@ -88,9 +88,9 @@ class PCovR(RegressorMixin, MultiOutputMixin, _BasePCov):
8888 range [0.0, infinity).
8989
9090 space: {'feature', 'sample', 'auto'}, default='auto'
91- whether to compute the PCovR in `sample` or `feature` space.
92- The default is = ` sample` when :math:`{n_{samples} < n_{features}}`
93- and `feature` when :math:`{n_{features} < n_{samples}}`
91+ whether to compute the PCovC in `` sample`` or `` feature` ` space.
92+ The default is equal to `` sample` ` when :math:`{n_{samples} < n_{features}}`
93+ and `` feature` ` when :math:`{n_{features} < n_{samples}}`
9494
9595 regressor: {`Ridge`, `RidgeCV`, `LinearRegression`, `precomputed`}, default=None
9696 regressor for computing approximated :math:`{\mathbf{\hat{Y}}}`. The regressor
@@ -126,9 +126,9 @@ class PCovR(RegressorMixin, MultiOutputMixin, _BasePCov):
126126 Must be of range [0.0, infinity).
127127
128128 space: {'feature', 'sample', 'auto'}, default='auto'
129- whether to compute the PCovR in `sample` or `feature` space. Default = `sample`
130- when :math:`{n_{samples} < n_{features}}` and `feature` when
131- :math:`{n_{features} < n_{samples}}`
129+ whether to compute the PCovR in `` sample`` or `` feature`` space.
130+ The default is equal to ``sample`` when :math:`{n_{samples} < n_{features}}`
131+ and ``feature`` when :math:`{n_{features} < n_{samples}}`
132132
133133 n_components_ : int
134134 The estimated number of components, which equals the parameter n_components, or
@@ -227,7 +227,7 @@ def fit(self, X, Y, W=None):
227227 regressed form of the properties, :math:`{\mathbf{\hat{Y}}}`.
228228
229229 W : numpy.ndarray, shape (n_features, n_properties)
230- Regression weights, optional when regressor = ` precomputed`. If not
230+ Regression weights, optional when regressor is `` precomputed` `. If not
231231 passed, it is assumed that `W = np.linalg.lstsq(X, Y, self.tol)[0]`
232232 """
233233 X , Y = validate_data (self , X , Y , y_numeric = True , multi_output = True )
0 commit comments