Skip to content

Commit 234f668

Browse files
committed
Addressing docs suggestions for inclusion of PCovC
1 parent 861eb07 commit 234f668

File tree

5 files changed

+23
-13
lines changed

5 files changed

+23
-13
lines changed

docs/src/getting-started.rst

Lines changed: 5 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -37,10 +37,10 @@ Notebook Examples
3737
.. include:: examples/reconstruction/index.rst
3838
:start-line: 4
3939

40-
.. _getting_started-pcovr:
40+
.. _getting_started-hybrid:
4141

42-
Principal Covariates Regression
43-
-------------------------------
42+
Hybrid Mapping Techniques
43+
-------------------------
4444

4545
.. automodule:: skmatter.decomposition
4646
:noindex:
@@ -50,3 +50,5 @@ Notebook Examples
5050

5151
.. include:: examples/pcovr/index.rst
5252
:start-line: 4
53+
.. include:: examples/pcovc/index.rst
54+
:start-line: 4

docs/src/index.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -33,15 +33,15 @@
3333

3434
.. only:: html
3535

36-
:ref:`getting_started-pcovr`
36+
:ref:`getting_started-hybrid`
3737

3838
.. image:: /examples/pcovr/images/thumb/sphx_glr_PCovR_thumb.png
3939
:alt:
4040

4141
.. raw:: html
4242

4343
</h5>
44-
<p class="card-text">Utilises a combination between a PCA-like and a LR-like loss
44+
<p class="card-text">PCovR and PCovC utilize a combination between a PCA-like and a LR-like loss
4545
to determine the decomposition matrix to project feature into latent space</p>
4646
</div>
4747
</div>

docs/src/references/decomposition.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
1-
Hybrid Mapping Techniques (PCovR and PCovC)
2-
===========================================
1+
Hybrid Mapping Techniques
2+
=========================
33

44
.. _PCovR-api:
55

src/skmatter/decomposition/__init__.py

Lines changed: 13 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -3,12 +3,18 @@
33
in order to compress data or visualise trends in the dataset. In the archetypal
44
method for this dimensionality reduction, principal components analysis (PCA),
55
features are transformed into the latent space which best preserves the
6-
variance of the original data. This module provides the Principal Covariates
7-
Regression (PCovR), as introduced by [deJong1992]_, is a modification to PCA
6+
variance of the original data.
7+
8+
This module provides the Principal Covariates
9+
Regression (PCovR), as introduced by [deJong1992]_, which is a modification to PCA
810
that incorporates target information, such that the resulting embedding could
911
be tuned using a mixing parameter α to improve performance in regression tasks
1012
(:math:`\alpha = 0` corresponding to linear regression and :math:`\alpha = 1`
11-
corresponding to PCA). [Helfrecht2020]_ introduced the non-linear version,
13+
corresponding to PCA). Also provided is Principal Covariates Classification (PCovC),
14+
proposed in [Jorgensen2025]_, which adapts PCovR for use in classification tasks by
15+
leveraging the evidence :math:`\mathbf{Z}` as an approximation of :math:`\mathbf{Y}`.
16+
17+
[Helfrecht2020]_ introduced the non-linear version of PCovR,
1218
Kernel Principal Covariates Regression (KPCovR), where the mixing parameter α
1319
now interpolates between kernel ridge regression (:math:`\alpha = 0`) and
1420
kernel principal components analysis (KPCA, :math:`\alpha = 1`).
@@ -20,8 +26,10 @@
2026
a low-dimensional projection of the feature vectors that simultaneously minimises
2127
information loss and error in predicting the target properties using only the
2228
latent space vectors :math:`\mathbf{T}`.
23-
* :ref:`KPCovR-api` the Kernel Principal Covariates Regression
24-
a kernel-based variation on the
29+
* :ref:`PCovC-api` the Principal Covariates Classification. Adapts PCovR for
30+
classification tasks, proposed in [Jorgensen2025]_.
31+
* :ref:`KPCovR-api` the Kernel Principal Covariates Regression.
32+
A kernel-based variation on the
2533
original PCovR method, proposed in [Helfrecht2020]_.
2634
"""
2735

src/skmatter/decomposition/_pcovc.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -100,7 +100,7 @@ class PCovC(LinearClassifierMixin, _BasePCov):
100100
default=`sample` when :math:`{n_{samples} < n_{features}}` and
101101
`feature` when :math:`{n_{features} < n_{samples}}`
102102
103-
classifier: estimator object or `precomputed`, default=None
103+
classifier: `estimator object` or `precomputed`, default=None
104104
classifier for computing :math:`{\mathbf{Z}}`. The classifier should be one of
105105
`sklearn.linear_model.LogisticRegression`, `sklearn.linear_model.LogisticRegressionCV`,
106106
`sklearn.svm.LinearSVC`, `sklearn.discriminant_analysis.LinearDiscriminantAnalysis`,

0 commit comments

Comments
 (0)