@@ -303,7 +303,7 @@ def fit(self, X, Y, W=None):
303303 not passed, it is assumed that the weights will be taken from a
304304 linear classifier fit between :math:`\mathbf{X}` and :math:`\mathbf{Y}`.
305305 In the multioutput case, use
306- `` W = np.hstack([est_.coef_.T for est_ in classifier.estimators_])``.
306+ ``W = np.hstack([est_.coef_.T for est_ in classifier.estimators_])``.
307307
308308 Returns
309309 -------
@@ -514,11 +514,11 @@ def decision_function(self, X=None, T=None):
514514
515515 Returns
516516 -------
517- Z : numpy.ndarray, shape (n_samples,) or (n_samples, n_classes), or a list of \
518- n_outputs_ such arrays if n_outputs_ > 1
517+ Z : numpy.ndarray, shape (n_samples,) or (n_samples, n_classes), or
518+ a list of n_outputs such arrays if n_outputs > 1.
519519 Confidence scores. For binary classification, has shape `(n_samples,)`,
520520 for multiclass classification, has shape `(n_samples, n_classes)`.
521- If n_outputs_ > 1, the list can contain arrays with differing shapes
521+ If n_outputs > 1, the list can contain arrays with differing shapes
522522 depending on the number of classes in each output of Y.
523523 """
524524 check_is_fitted (self , attributes = ["pkz_" , "ptz_" ])
0 commit comments