Skip to content

Commit 35c1b0f

Browse files
author
Christian Jorgensen
committed
fixing docs
1 parent c00b77a commit 35c1b0f

File tree

2 files changed

+7
-7
lines changed

2 files changed

+7
-7
lines changed

src/skmatter/decomposition/_kernel_pcovc.py

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -303,7 +303,7 @@ def fit(self, X, Y, W=None):
303303
not passed, it is assumed that the weights will be taken from a
304304
linear classifier fit between :math:`\mathbf{X}` and :math:`\mathbf{Y}`.
305305
In the multioutput case, use
306-
`` W = np.hstack([est_.coef_.T for est_ in classifier.estimators_])``.
306+
``W = np.hstack([est_.coef_.T for est_ in classifier.estimators_])``.
307307
308308
Returns
309309
-------
@@ -514,11 +514,11 @@ def decision_function(self, X=None, T=None):
514514
515515
Returns
516516
-------
517-
Z : numpy.ndarray, shape (n_samples,) or (n_samples, n_classes), or a list of \
518-
n_outputs_ such arrays if n_outputs_ > 1
517+
Z : numpy.ndarray, shape (n_samples,) or (n_samples, n_classes), or
518+
a list of n_outputs such arrays if n_outputs > 1.
519519
Confidence scores. For binary classification, has shape `(n_samples,)`,
520520
for multiclass classification, has shape `(n_samples, n_classes)`.
521-
If n_outputs_ > 1, the list can contain arrays with differing shapes
521+
If n_outputs > 1, the list can contain arrays with differing shapes
522522
depending on the number of classes in each output of Y.
523523
"""
524524
check_is_fitted(self, attributes=["pkz_", "ptz_"])

src/skmatter/decomposition/_pcovc.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -133,8 +133,8 @@ class PCovC(LinearClassifierMixin, _BasePCov):
133133
`sklearn.pipeline.Pipeline` with model caching.
134134
In such cases, the classifier will be re-fitted on the same
135135
training data as the composite estimator.
136-
If None and ``n_outputs < 2``, ``sklearn.linear_model.LogisticRegression()`` is used.
137-
If None and ``n_outputs >= 2``, a ``sklearn.multioutput.MultiOutputClassifier()`` is
136+
If None and ``n_outputs_ < 2``, ``sklearn.linear_model.LogisticRegression()`` is used.
137+
If None and ``n_outputs_ >= 2``, a ``sklearn.multioutput.MultiOutputClassifier()`` is
138138
constructed, with ``sklearn.linear_model.LogisticRegression()`` models used for each
139139
label.
140140
@@ -301,7 +301,7 @@ def fit(self, X, Y, W=None):
301301
not passed, it is assumed that the weights will be taken from a
302302
linear classifier fit between :math:`\mathbf{X}` and :math:`\mathbf{Y}`.
303303
In the multioutput case, use
304-
`` W = np.hstack([est_.coef_.T for est_ in classifier.estimators_])``.
304+
``W = np.hstack([est_.coef_.T for est_ in classifier.estimators_])``.
305305
"""
306306
X, Y = validate_data(self, X, Y, multi_output=True, y_numeric=False)
307307

0 commit comments

Comments
 (0)