@@ -195,6 +195,9 @@ class PCovC(LinearClassifierMixin, _BasePCov):
195195 the projector, or weights, from the latent-space projection
196196 :math:`\mathbf{T}` to the class confidence scores :math:`\mathbf{Z}`
197197
198+ scale_z: bool
199+ Whether Z is being scaled prior to eigendecomposition
200+
198201 explained_variance_ : numpy.ndarray of shape (n_components,)
199202 The amount of variance explained by each of the selected components.
200203 Equal to n_components largest eigenvalues
@@ -215,10 +218,10 @@ class PCovC(LinearClassifierMixin, _BasePCov):
215218 >>> pcovc.fit(X, Y)
216219 PCovC(mixing=0.1, n_components=2)
217220 >>> pcovc.transform(X)
218- array([[-0.38989065 , -0.21368409 ],
219- [ 1.55313271 , 0.20273297 ],
220- [-0.87105559 , 0.68233882 ],
221- [-0.29218647 , -0.6713877 ]])
221+ array([[-0.4794854 , -0.46228114 ],
222+ [ 1.9416966 , 0.2532831 ],
223+ [-1.08744947 , 0.89117784 ],
224+ [-0.37476173 , -0.6821798 ]])
222225 >>> pcovc.predict(X)
223226 array([0, 1, 2, 0])
224227 """ # NoQa: E501
0 commit comments