@@ -39,7 +39,7 @@ class KernelPCovR(_BasePCA, LinearModel):
3939 Parameters
4040 ----------
4141 mixing : float, default=0.5
42- mixing parameter, as described in PCovR as :math:`{\\ alpha}`
42+ mixing parameter, as described in PCovR as :math:`{\alpha}`
4343 n_components : int, float or str, default=None
4444 Number of components to keep.
4545 if n_components is not set all components are kept::
@@ -64,7 +64,7 @@ class KernelPCovR(_BasePCA, LinearModel):
6464 run randomized SVD by the method of Halko et al.
6565 regressor : {instance of `sklearn.kernel_ridge.KernelRidge`, `precomputed`, None}, default=None
6666 The regressor to use for computing
67- the property predictions :math:`\\ hat{\ \mathbf{Y}}`.
67+ the property predictions :math:`\hat{\mathbf{Y}}`.
6868 A pre-fitted regressor may be provided.
6969 If the regressor is not `None`, its kernel parameters
7070 (`kernel`, `gamma`, `degree`, `coef0`, and `kernel_params`)
@@ -112,17 +112,17 @@ class KernelPCovR(_BasePCA, LinearModel):
112112 pseudo-inverse of the latent-space projection, which
113113 can be used to contruct projectors from latent-space
114114 pkt_: numpy.ndarray of size :math:`({n_{samples}, n_{components}})`
115- the projector, or weights, from the input kernel :math:`\\ mathbf{K}`
116- to the latent-space projection :math:`\\ mathbf{T}`
115+ the projector, or weights, from the input kernel :math:`\mathbf{K}`
116+ to the latent-space projection :math:`\mathbf{T}`
117117 pky_: numpy.ndarray of size :math:`({n_{samples}, n_{properties}})`
118- the projector, or weights, from the input kernel :math:`\\ mathbf{K}`
119- to the properties :math:`\\ mathbf{Y}`
118+ the projector, or weights, from the input kernel :math:`\mathbf{K}`
119+ to the properties :math:`\mathbf{Y}`
120120 pty_: numpy.ndarray of size :math:`({n_{components}, n_{properties}})`
121121 the projector, or weights, from the latent-space projection
122- :math:`\\ mathbf{T}` to the properties :math:`\ \mathbf{Y}`
122+ :math:`\mathbf{T}` to the properties :math:`\mathbf{Y}`
123123 ptx_: numpy.ndarray of size :math:`({n_{components}, n_{features}})`
124124 the projector, or weights, from the latent-space projection
125- :math:`\\ mathbf{T}` to the feature matrix :math:`\ \mathbf{X}`
125+ :math:`\mathbf{T}` to the feature matrix :math:`\mathbf{X}`
126126 X_fit_: numpy.ndarray of shape (n_samples, n_features)
127127 The data used to fit the model. This attribute is used to build kernels
128128 from new data.
@@ -160,7 +160,7 @@ class KernelPCovR(_BasePCA, LinearModel):
160160 [ 1.11923584, -1.04798016],
161161 [-1.5635827 , 1.11078662]])
162162 >>> round(kpcovr.score(X, Y), 5)
163- -0.52039
163+ np.float64( -0.52039)
164164 """ # NoQa: E501
165165
166166 def __init__ (
@@ -246,15 +246,15 @@ def fit(self, X, Y, W=None):
246246
247247 It is suggested that :math:`\mathbf{X}` be centered by its column-
248248 means and scaled. If features are related, the matrix should be scaled
249- to have unit variance, otherwise :math:`\\ mathbf{X}` should be
249+ to have unit variance, otherwise :math:`\mathbf{X}` should be
250250 scaled so that each feature has a variance of 1 / n_features.
251251 Y : numpy.ndarray, shape (n_samples, n_properties)
252252 Training data, where n_samples is the number of samples and
253253 n_properties is the number of properties
254254
255- It is suggested that :math:`\\ mathbf{X}` be centered by its column-
255+ It is suggested that :math:`\mathbf{X}` be centered by its column-
256256 means and scaled. If features are related, the matrix should be scaled
257- to have unit variance, otherwise :math:`\\ mathbf{Y}` should be
257+ to have unit variance, otherwise :math:`\mathbf{Y}` should be
258258 scaled so that each feature has a variance of 1 / n_features.
259259 W : numpy.ndarray, shape (n_samples, n_properties)
260260 Regression weights, optional when regressor=`precomputed`. If not
@@ -420,7 +420,7 @@ def inverse_transform(self, T):
420420 r"""Transform input data back to its original space.
421421
422422 .. math::
423- \mathbf{\\ hat{X}} = \mathbf{T} \mathbf{P}_{TX}
423+ \mathbf{\hat{X}} = \mathbf{T} \mathbf{P}_{TX}
424424 = \mathbf{K} \mathbf{P}_{KT} \mathbf{P}_{TX}
425425
426426 Similar to KPCA, the original features are not always recoverable,
0 commit comments