@@ -18,24 +18,46 @@ where at each iteration the model scores each
18
18
feature or sample (without an estimator) and chooses that with the maximum score.
19
19
This can be executed using:
20
20
21
- .. code-block :: python
22
-
23
- selector = Selector(
24
- # the number of selections to make
25
- # if None, set to half the samples or features
26
- # if float, fraction of the total dataset to select
27
- # if int, absolute number of selections to make
28
- n_to_select = 4 ,
29
- # option to use `tqdm <https://tqdm.github.io/>`_ progress bar
30
- progress_bar = True ,
31
- # float, cutoff score to stop selecting
32
- score_threshold = 1e-12 ,
33
- # boolean, whether to select randomly after non-redundant selections are exhausted
34
- full = False ,
35
- )
36
- selector.fit(X, y)
37
-
38
- Xr = selector.transform(X)
21
+ .. doctest ::
22
+
23
+ >>> import numpy as np
24
+ >>> from skmatter.feature_selection import CUR , FPS , PCovCUR, PCovFPS
25
+ >>> selector = CUR(
26
+ ... # the number of selections to make
27
+ ... # if None, set to half the samples or features
28
+ ... # if float, fraction of the total dataset to select
29
+ ... # if int, absolute number of selections to make
30
+ ... n_to_select= 2 ,
31
+ ... # option to use `tqdm <https://tqdm.github.io/>`_ progress bar
32
+ ... progress_bar= True ,
33
+ ... # float, cutoff score to stop selecting
34
+ ... score_threshold= 1e-12 ,
35
+ ... # boolean, whether to select randomly after non-redundant selections
36
+ ... # are exhausted
37
+ ... full= False ,
38
+ ... )
39
+ >>> X = np.array([[ 0.12 , 0.21 , 0.02 ], # 3 samples, 3 features
40
+ ... [- 0.09 , 0.32 , - 0.10 ],
41
+ ... [- 0.03 , - 0.53 , 0.08 ]])
42
+ >>> y = np.array([0 ., 0 ., 1 .]) # classes of each sample
43
+ >>> selector.fit(X)
44
+ CUR(n_to_select=2, progress_bar=True, score_threshold=1e-12)
45
+ >>> Xr = selector.transform(X)
46
+ >>> print (Xr.shape)
47
+ (3, 2)
48
+ >>> selector = PCovCUR(n_to_select = 2 )
49
+ >>> selector.fit(X, y)
50
+ PCovCUR(n_to_select=2)
51
+ >>> Xr = selector.transform(X)
52
+ >>> print (Xr.shape)
53
+ (3, 2)
54
+ >>> from skmatter.sample_selection import CUR , FPS , PCovCUR, PCovFPS
55
+ >>> selector = CUR(n_to_select = 2 )
56
+ >>> selector.fit(X)
57
+ CUR(n_to_select=2)
58
+ >>> Xr = X[selector.selected_idx_]
59
+ >>> print (Xr.shape)
60
+ (2, 3)
39
61
40
62
where `Selector ` is one of the classes below that overwrites the method
41
63
:py:func: `score `.
0 commit comments