-
Couldn't load subscription status.
- Fork 23
Open
Description
import numpy as np
from skmatter.metrics import global_reconstruction_distortion
A_features = np.random.rand(10, 5)
B_features = np.random.rand(10, 4)
result = global_reconstruction_distortion(A_features, B_features)
raises:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In[148], [line 7](vscode-notebook-cell:?execution_count=148&line=7)
4 A_features = np.random.rand(10, 5)
5 B_features = np.random.rand(10, 4)
----> [7](vscode-notebook-cell:?execution_count=148&line=7) result = global_reconstruction_distortion(A_features, B_features)
File /opt/miniconda3/envs/course/lib/python3.11/site-packages/skmatter/metrics/_reconstruction_measures.py:315, in global_reconstruction_distortion(X, Y, test_idx, train_idx, scaler, estimator)
255 def global_reconstruction_distortion(
256 X,
257 Y,
(...) 261 estimator=None,
262 ):
263 r"""Computes the global reconstruction distortion using the source X
264 to reconstruct the features or samples of target Y based on a minimization
265 by orthogonal regression:
(...) 312
313 """
314 pointwise_global_reconstruction_distortion_values = (
--> [315](https://file+.vscode-resource.vscode-cdn.net/opt/miniconda3/envs/course/lib/python3.11/site-packages/skmatter/metrics/_reconstruction_measures.py:315) pointwise_global_reconstruction_distortion(
316 X,
317 Y,
318 train_idx=train_idx,
319 test_idx=test_idx,
320 scaler=scaler,
...
249 .predict(X_test)
250 )
--> [252](https://file+.vscode-resource.vscode-cdn.net/opt/miniconda3/envs/course/lib/python3.11/site-packages/skmatter/metrics/_reconstruction_measures.py:252) return np.linalg.norm(predictions_Y_test - orthogonal_predictions_Y_test, axis=1)
ValueError: operands could not be broadcast together with shapes (5,4) (5,5)
However in the documentation it states that the number of features can be different.
Perhaps, it would make sense to update the documentation if indeed different dimensions are not supported
Metadata
Metadata
Assignees
Labels
No labels