@@ -1003,10 +1003,11 @@ class SparseLogisticRegression(LinearClassifierMixin, SparseCoefMixin, BaseEstim
10031003 Number of subproblems solved to reach the specified tolerance.
10041004 """
10051005
1006- def __init__ (self , alpha = 1.0 , tol = 1e-4 , max_iter = 20 , max_epochs = 1_000 , verbose = 0 ,
1006+ def __init__ (self , alpha = 1.0 , l1ratio = 0.5 , tol = 1e-4 , max_iter = 20 , max_epochs = 1_000 , verbose = 0 ,
10071007 fit_intercept = True , warm_start = False ):
10081008 super ().__init__ ()
10091009 self .alpha = alpha
1010+ self .l1ratio = l1ratio
10101011 self .tol = tol
10111012 self .max_iter = max_iter
10121013 self .max_epochs = max_epochs
@@ -1035,7 +1036,7 @@ def fit(self, X, y):
10351036 max_iter = self .max_iter , max_pn_iter = self .max_epochs , tol = self .tol ,
10361037 fit_intercept = self .fit_intercept , warm_start = self .warm_start ,
10371038 verbose = self .verbose )
1038- return _glm_fit (X , y , self , Logistic (), L1 (self .alpha ), solver )
1039+ return _glm_fit (X , y , self , Logistic (), L1_plus_L2 (self .alpha , self . l1ratio ), solver )
10391040
10401041 def predict_proba (self , X ):
10411042 """Probability estimates.
0 commit comments