Skip to content

Commit 18378fb

Browse files
Remove trailing whitespace to pass linter
1 parent a4b66c0 commit 18378fb

File tree

1 file changed

+5
-5
lines changed

1 file changed

+5
-5
lines changed

skglm/estimators.py

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -959,12 +959,12 @@ class SparseLogisticRegression(LinearClassifierMixin, SparseCoefMixin, BaseEstim
959959
960960
The optimization objective for sparse Logistic regression is:
961961
962-
.. math::
962+
.. math::
963963
\frac{1}{n_{\text{samples}}} \sum_{i=1}^{n_{\text{samples}}}
964964
\log\left(1 + \exp(-y_i x_i^T w)\right)
965965
+ \alpha \cdot \left( \text{l1_ratio} \cdot \|w\|_1 +
966966
(1 - \text{l1_ratio}) \cdot \|w\|_2^2 \right)
967-
967+
968968
By default, ``l1_ratio=1.0`` corresponds to Lasso (pure L1 penalty).
969969
When ``0 < l1_ratio < 1``, the penalty is a convex combination of L1 and L2
970970
(i.e., ElasticNet). ``l1_ratio=0.0`` corresponds to Ridge (pure L2), but note
@@ -977,9 +977,9 @@ class SparseLogisticRegression(LinearClassifierMixin, SparseCoefMixin, BaseEstim
977977
978978
l1_ratio : float, default=1.0
979979
The ElasticNet mixing parameter, with ``0 <= l1_ratio <= 1``.
980-
Only used when ``penalty="l1_plus_l2"``.
981-
For ``l1_ratio = 0`` the penalty is an L2 penalty.
982-
``For l1_ratio = 1`` it is an L1 penalty.
980+
Only used when ``penalty="l1_plus_l2"``.
981+
For ``l1_ratio = 0`` the penalty is an L2 penalty.
982+
``For l1_ratio = 1`` it is an L1 penalty.
983983
For ``0 < l1_ratio < 1``, the penalty is a combination of L1 and L2.
984984
985985
tol : float, optional

0 commit comments

Comments
 (0)