@@ -959,19 +959,28 @@ class SparseLogisticRegression(LinearClassifierMixin, SparseCoefMixin, BaseEstim
959959
960960 The optimization objective for sparse Logistic regression is:
961961
962- .. math:: 1 / n_"samples" sum_(i=1)^(n_"samples") log(1 + exp(-y_i x_i^T w))
963- + alpha ||w||_1
962+ .. math::
963+ \frac{1}{n_{\text{samples}}} \sum_{i=1}^{n_{\text{samples}}}
964+ \log\left(1 + \exp(-y_i x_i^T w)\right)
965+ + \alpha \cdot \left( \text{l1_ratio} \cdot \|w\|_1 +
966+ (1 - \text{l1_ratio}) \cdot \|w\|_2^2 \right)
967+
968+ By default, ``l1_ratio=1.0`` corresponds to Lasso (pure L1 penalty).
969+ When ``0 < l1_ratio < 1``, the penalty is a convex combination of L1 and L2
970+ (i.e., ElasticNet). ``l1_ratio=0.0`` corresponds to Ridge (pure L2), but note
971+ that pure Ridge is not typically used with this class.
964972
965973 Parameters
966974 ----------
967975 alpha : float, default=1.0
968976 Regularization strength; must be a positive float.
969977
970978 l1_ratio : float, default=1.0
971- The ElasticNet mixing parameter, with ``0 <= l1_ratio <= 1``. For
972- ``l1_ratio = 0`` the penalty is an L2 penalty. ``For l1_ratio = 1`` it
973- is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a
974- combination of L1 and L2.
979+ The ElasticNet mixing parameter, with ``0 <= l1_ratio <= 1``.
980+ Only used when ``penalty="l1_plus_l2"``.
981+ For ``l1_ratio = 0`` the penalty is an L2 penalty.
982+ ``For l1_ratio = 1`` it is an L1 penalty.
983+ For ``0 < l1_ratio < 1``, the penalty is a combination of L1 and L2.
975984
976985 tol : float, optional
977986 Stopping criterion for the optimization.
0 commit comments